Plan du cours
Understanding AI and Machine Learning
- What is AI and how is it defined?
- Machine Learning as a subset of AI
- Types of AI: weak, strong, generative, supervised, unsupervised
AI in Practice Across the Organization
- Where AI/ML currently exists in business functions
- Automation, decision support, customer service, and analytics
- Use cases in HR, finance, operations, and compliance
Common Governance Challenges
- Conflicts with the Data Protection Principles
- Lawfulness, fairness, and transparency in automated decision-making
- Accuracy, data minimization, and storage limitations
Foundations in Information and Data Management
- Information and records management in AI contexts
- The importance of metadata and audit trails
- Maintaining data quality and integrity for training datasets
Approaching Information Governance Challenges
- Designing governance controls for AI/ML pipelines
- Human oversight and explainability
- Building cross-functional governance teams
Conducting DPIAs for AI/ML
- Legal requirement and purpose of DPIAs
- Steps to assess proposed AI/ML implementations
- Documenting risk assessments, mitigations, and justifications
Governance Frameworks and Risk Management
- Overview of AI-specific governance frameworks
- ISO, NIST, ICO, and OECD approaches
- Risk registers and policy documentation
Culture, Integration, and Related Frameworks
- Embedding a culture of responsible AI use
- Linking AI governance with cybersecurity, ethics, and ESG policies
- Continuous improvement and monitoring
Summary and Next Steps
Pré requis
- An understanding of organizational information governance policies
- Familiarity with data protection or privacy regulations
- Some exposure to AI or machine learning concepts is helpful
Audience
- Information governance professionals
- Data protection officers and compliance managers
- Digital transformation or IT governance leads
Nos clients témoignent (2)
l'écosystème ML comprend non seulement MLFlow mais aussi Optuna, hyperops, docker et docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Formation - MLflow
Traduction automatique
J'ai apprécié de participer à la formation Kubeflow, qui s'est déroulée en ligne. Cette formation m'a permis de consolider mes connaissances sur les services AWS, K8s et tous les outils DevOps associés à Kubeflow, qui sont les bases nécessaires pour aborder correctement le sujet. Je tiens à remercier Malawski Marcin pour sa patience et son professionnalisme dans la formation et ses conseils sur les meilleures pratiques. Malawskiaborde le sujet sous différents angles, avec divers outils de déploiement Ansible, EKS kubectl, Terraform. Maintenant, je suis définitivement convaincu que je m'oriente vers le bon domaine d'application.
Guillaume Gautier - OLEA MEDICAL | Improved diagnosis for life TM
Formation - Kubeflow
Traduction automatique