
L'apprentissage automatique ou apprentissage statistique, champ d'étude de l'intelligence artificielle, concerne la conception, l'analyse, le développement et l'implémentation de méthodes permettant à une machine (au sens large) d'évoluer par un processus systématique, et ainsi de remplir des tâches difficiles ou problématiques à remplir par des moyens algorithmiques plus classiques.
Nos Clients témoignent
Alternance théorie/pratique efficace !
CIRAD
Formation: Introduction au Machine Learning avec MATLAB
Présentation progressive et application des méthodes
Aurélien Briffaz - CIRAD
Formation: Introduction au Machine Learning avec MATLAB
Disponibilité et adaptabilité, réponses aux questions
Jean-Michel MEOT - CIRAD
Formation: Introduction au Machine Learning avec MATLAB
La vue d'ensemble globale de l'apprentissage en profondeur.
Bruno Charbonnier
Formation: Advanced Deep Learning
Machine Translated
Les exercices sont suffisamment pratiques et ne nécessitent pas de connaissances approfondies en Python .
Alexandre GIRARD
Formation: Advanced Deep Learning
Machine Translated
Faire des exercices sur des exemples réels en utilisant Eras. L'Italie a parfaitement compris nos attentes concernant cette formation.
Paul Kassis
Formation: Advanced Deep Learning
Machine Translated
J'ai vraiment apprécié les réponses claires de Chris à nos questions.
Léo Dubus
Formation: Réseau de Neurones, les Fondamentaux en utilisant TensorFlow comme Exemple
Machine Translated
Les échanges informels que nous avons eus au cours des conférences m’ont vraiment aidé à approfondir ma compréhension du sujet
Explore
Formation: Deep Reinforcement Learning with Python
Machine Translated
C'était très interactif et plus détendu et informel que prévu. Nous avons couvert de nombreux sujets dans le temps et le formateur a toujours été réceptif à parler plus en détail ou plus généralement des sujets et de leurs relations. Je pense que la formation m'a donné les outils pour continuer à apprendre, par opposition à une session unique où l'apprentissage s'arrête une fois que vous avez terminé, ce qui est très important compte tenu de l'ampleur et de la complexité du sujet.
Jonathan Blease
Formation: Artificial Neural Networks, Machine Learning, Deep Thinking
Machine Translated
Le formateur était très compétent et comprenait des domaines qui m'intéressaient.
Mohamed Salama
Formation: Data Mining & Machine Learning with R
Machine Translated
Le sujet est très intéressant.
Wojciech Baranowski
Formation: Introduction to Deep Learning
Machine Translated
Connaissances théoriques des formateurs et volonté de résoudre les problèmes avec les participants après la formation.
Grzegorz Mianowski
Formation: Introduction to Deep Learning
Machine Translated
Sujet. Très intéressant!.
Piotr
Formation: Introduction to Deep Learning
Machine Translated
Les exercices après chaque sujet ont été très utiles, même s’ils étaient trop compliqués à la fin. En général, le matériel présenté était très intéressant et intéressant! Les exercices avec reconnaissance d'image étaient excellents.
Dolby Poland Sp. z o.o.
Formation: Introduction to Deep Learning
Machine Translated
Je pense que si la formation se faisait en polonais, cela permettrait au formateur de partager ses connaissances plus efficacement.
Radek
Formation: Introduction to Deep Learning
Machine Translated
J'ai généralement apprécié le formateur compétent.
Sridhar Voorakkara
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
J'ai été stupéfait par la qualité de ce cours - je dirais que c'était la norme universitaire.
David Relihan
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Très bon aperçu général. Go historique des raisons pour lesquelles Tensorflow fonctionne comme il le fait.
Kieran Conboy
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
J'ai aimé les possibilités de poser des questions et d'obtenir des explications plus approfondies de la théorie.
Sharon Ruane
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Nous avons eu beaucoup plus d'informations sur le sujet. Une belle discussion a été faite avec certains sujets réels au sein de notre société.
Sebastiaan Holman
Formation: Machine Learning and Deep Learning
Machine Translated
La formation a fourni la bonne base qui nous permet de continuer à nous développer, en montrant comment la théorie et la pratique vont de pair. En fait, cela m'intéressait plus que par le passé.
Jean-Paul van Tillo
Formation: Machine Learning and Deep Learning
Machine Translated
J'ai vraiment apprécié la couverture et la profondeur des sujets.
Anirban Basu
Formation: Machine Learning and Deep Learning
Machine Translated
Le formateur a très facilement expliqué des sujets difficiles et avancés.
Leszek K
Formation: Artificial Intelligence Overview
Machine Translated
La connaissance approfondie du formateur sur le sujet.
Sebastian Görg
Formation: Introduction to Deep Learning
Machine Translated
Approche très actualisée ou IPC (flux tensoriel, ère, apprendre) pour faire de l'apprentissage automatique.
Paul Lee
Formation: TensorFlow for Image Recognition
Machine Translated
Très souple.
Frank Ueltzhöffer
Formation: Artificial Neural Networks, Machine Learning and Deep Thinking
Machine Translated
J'ai généralement apprécié la flexibilité.
Werner Philipp
Formation: Artificial Neural Networks, Machine Learning and Deep Thinking
Machine Translated
Compte tenu des perspectives de la technologie: quelle technologie / processus pourrait devenir plus important dans le futur; voir à quoi la technologie peut être utilisée
Commerzbank AG
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
J'ai bénéficié de la sélection de sujets. Style de formation. Orientation pratique
Commerzbank AG
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Tout comme ça
蒙 李
Formation: Machine Learning Fundamentals with Python
Machine Translated
manière de conduire et exemple donné par le formateur
ORANGE POLSKA S.A.
Formation: Machine Learning and Deep Learning
Machine Translated
Possibilité de discuter vous-même des problèmes proposés
ORANGE POLSKA S.A.
Formation: Machine Learning and Deep Learning
Machine Translated
Communication avec des conférenciers
文欣 张
Formation: Artificial Neural Networks, Machine Learning, Deep Thinking
Machine Translated
Comme ça
lisa xie
Formation: Artificial Neural Networks, Machine Learning, Deep Thinking
Machine Translated
Couverture approfondie des sujets d'apprentissage automatique, en particulier des réseaux de neurones. Démystifié beaucoup de sujet.
Sacha Nandlall
Formation: Python for Advanced Machine Learning
Machine Translated
J'ai vraiment aimé les exercices
L M ERICSSON LIMITED
Formation: Machine Learning
Machine Translated
les exercices de laboratoire
Marcell Lorant - L M ERICSSON LIMITED
Formation: Machine Learning
Machine Translated
Le cahier Jupyter, dans lequel le matériel de formation est disponible
L M ERICSSON LIMITED
Formation: Machine Learning
Machine Translated
Il y avait beaucoup d'exercices et de sujets intéressants.
L M ERICSSON LIMITED
Formation: Machine Learning
Machine Translated
des exercices de laboratoire géniaux analysés et expliqués en profondeur par le formateur (par exemple, covariants en régression linéaire, correspondant à la fonction réelle)
L M ERICSSON LIMITED
Formation: Machine Learning
Machine Translated
C'est tout simplement génial que tout le matériel, y compris les exercices, soit sur la même page et qu'il soit mis à jour à la volée. La solution est révélée à la fin. Cool! De plus, j'apprécie que Krzysztof ait fait un effort supplémentaire pour comprendre nos problèmes et nous a suggéré des techniques possibles.
Attila Nagy - L M ERICSSON LIMITED
Formation: Machine Learning
Machine Translated
Connaissances approfondies et actualisées d’exemples d’applications de premier plan et pratiques.
ING Bank Śląski S.A.
Formation: Introduction to Deep Learning
Machine Translated
Sous-catégories Machine Learning (ML)
Plans de cours Machine Learning (ML)
This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use Azure Machine Learning and Azure DevOps to facilitate MLOps practices.
By the end of this training, participants will be able to:
- Build reproducible workflows and machine learning models.
- Manage the machine learning lifecycle.
- Track and report model version history, assets, and more.
- Deploy production ready machine learning models anywhere.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Dans ce cours, nous allons passer en revue les principes des réseaux de neurones et utiliser OpenNN pour implémenter un exemple d'application.
Public
Les développeurs de logiciels et les programmeurs souhaitant créer des applications d'apprentissage approfondi.
Format du cours
Lecture et discussion associées à des exercices pratiques.
À la fin de cette formation, les participants disposeront des connaissances et de la pratique nécessaires pour mettre en œuvre une solution OpenNMT direct.
Des échantillons de langue source et cible seront pré-arrangés selon les exigences du public.
Format du cours
- Partie de conférence, partie de discussion, pratique intense
This instructor-led, live training (online or onsite) is aimed at software engineers who wish to program in Python with OpenCV 4 for deep learning.
By the end of this training, participants will be able to:
- View, load, and classify images and videos using OpenCV 4.
- Implement deep learning in OpenCV 4 with TensorFlow and Keras.
- Run deep learning models and generate impactful reports from images and videos.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Cette formation met davantage l'accent sur les principes fondamentaux, mais vous aidera à choisir la technologie TensorFlow : TensorFlow , Caffe , Teano, DeepDrive, Keras , etc. Les exemples sont réalisés dans TensorFlow .
This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use Apache MXNet to build and deploy a deep learning model for image recognition.
By the end of this training, participants will be able to:
- Install and configure Apache MXNet and its components.
- Understand MXNet's architecture and data structures.
- Use Apache MXNet's low-level and high-level APIs to efficiently build neural networks.
- Build a convolutional neural network for image classification.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
C'est un large aperçu des méthodes existantes, des motivations et des idées principales dans le contexte de la reconnaissance de formes.
Après une brève formation théorique, les participants effectueront un exercice simple en utilisant une source ouverte (généralement R) ou tout autre logiciel populaire.
notre objectif est de vous donner les compétences pour comprendre et utiliser les outils les plus fondamentaux de la boîte à outils machine learning en toute confiance et d’éviter les pièges communs des applications Data sciences.
This instructor-led, live training (online or onsite) is aimed at engineers who wish to evaluate the approaches and tools available today to make an intelligent decision on the path forward in adopting MLOps within their organization.
By the end of this training, participants will be able to:
- Install and configure various MLOps frameworks and tools.
- Assemble the right kind of team with the right skills for constructing and supporting an MLOps system.
- Prepare, validate and version data for use by ML models.
- Understand the components of an ML Pipeline and the tools needed to build one.
- Experiment with different machine learning frameworks and servers for deploying to production.
- Operationalize the entire Machine Learning process so that it's reproduceable and maintainable.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Format du cours
- Ce cours présente les approches, les technologies et les algorithmes utilisés dans le domaine de la correspondance de modèles tel qu'il s'applique à la Machine Vision .
Public
Les scientifiques de données et les statisticiens qui sont familiarisés avec l’apprentissage automatique et savent comment programmer R. Ce cours met l’accent sur les aspects pratiques de la préparation, de l’exécution, de l’analyse post-hoc et de la visualisation de modèles et de données. Le but est de donner une introduction pratique à l’apprentissage automatique aux participants intéressés par l’application des méthodes au travail
Des exemples sectoriels sont utilisés pour rendre la formation pertinente pour le public cible.
Notre objectif est de vous donner les compétences nécessaires pour comprendre et utiliser en toute confiance les outils les plus fondamentaux de la boîte Machine Learning outils Machine Learning et éviter les pièges courants des applications Data Science .
Notre objectif est de vous donner les compétences nécessaires pour comprendre et utiliser en toute confiance les outils les plus fondamentaux de la boîte Machine Learning outils Machine Learning et éviter les pièges courants des applications Data Science .
Notre objectif est de vous donner les compétences nécessaires pour comprendre et utiliser en toute confiance les outils les plus fondamentaux de la boîte Machine Learning outils Machine Learning et éviter les pièges courants des applications Data Science .
This instructor-led, live training (online or onsite) is aimed at data scientists who wish to go beyond building ML models and optimize the ML model creation, tracking, and deployment process.
By the end of this training, participants will be able to:
- Install and configure MLflow and related ML libraries and frameworks.
- Appreciate the importance of trackability, reproducability and deployability of an ML model
- Deploy ML models to different public clouds, platforms, or on-premise servers.
- Scale the ML deployment process to accommodate multiple users collaborating on a project.
- Set up a central registry to experiment with, reproduce, and deploy ML models.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Au cours de cette formation en direct animée par un instructeur, les participants apprendront comment appliquer des techniques et des outils d'apprentissage automatique pour résoudre des problèmes concrets du secteur financier. R sera utilisé comme langage de programmation.
Les participants apprennent d’abord les principes clés, puis mettent leurs connaissances en pratique en construisant leurs propres modèles d’apprentissage automatique et en les utilisant pour mener à bien un certain nombre de projets d’équipe.
À la fin de cette formation, les participants seront en mesure de:
- Comprendre les concepts fondamentaux de l'apprentissage automatique
- Apprenez les applications et les utilisations de la machine learning en finance
- Développer leur propre stratégie de trading algorithmique en utilisant l’apprentissage automatique avec R
Public
- Développeurs
- Scientifiques de données
Format du cours
- Partie de conférence, partie de discussion, exercices et exercices intensifs
Au cours de cette formation en direct animée par un instructeur, les participants apprendront comment appliquer des techniques et des outils d'apprentissage automatique pour résoudre des problèmes concrets du secteur financier.
Les participants apprennent d’abord les principes clés, puis mettent leurs connaissances en pratique en construisant leurs propres modèles d’apprentissage automatique et en les utilisant pour mener à bien un certain nombre de projets d’équipe.
À la fin de cette formation, les participants seront en mesure de:
- Comprendre les concepts fondamentaux de l'apprentissage automatique
- Apprenez les applications et les utilisations de la machine learning en finance
- Développer leur propre stratégie de trading algorithmique en utilisant l'apprentissage automatique avec Python
Public
- Développeurs
- Scientifiques de données
Format du cours
- Partie de conférence, partie de discussion, exercices et exercices intensifs
Public cible
- Investisseurs et entrepreneurs en IA
- Gestionnaires et ingénieurs dont l'entreprise se lance dans l'IA
- Analystes d' Business et investisseurs
This instructor-led, live training (online or onsite) is aimed at data scientists and developers who wish to use ML.NET machine learning models to automatically derive projections from executed data analysis for enterprise applications.
By the end of this training, participants will be able to:
- Install ML.NET and integrate it into the application development environment.
- Understand the machine learning principles behind ML.NET tools and algorithms.
- Build and train machine learning models to perform predictions with the provided data smartly.
- Evaluate the performance of a machine learning model using the ML.NET metrics.
- Optimize the accuracy of the existing machine learning models based on the ML.NET framework.
- Apply the machine learning concepts of ML.NET to other data science applications.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Public
Ce cours est destiné aux développeurs et aux scientifiques qui souhaitent créer des moteurs prédictifs pour toute tâche d'apprentissage automatique.