Les formations Deep Learning

Les formations Deep Learning

Des cours de formation Deep Learning (DL) en direct, organisés à l'échelle locale, illustrent les principes fondamentaux et les applications de Deep Learning et traitent de sujets tels que l'apprentissage machine profond, l'apprentissage structuré profond et l'apprentissage hiérarchique La formation Deep Learning est disponible en tant que «formation en direct sur site» ou «formation en direct à distance» La formation en direct sur site peut être effectuée localement dans les locaux du client France ou dans les centres de formation d'entreprise NobleProg à France La formation en ligne à distance est réalisée au moyen d'un ordinateur de bureau interactif et distant NobleProg Votre fournisseur de formation local.

Machine Translated

Nos Clients témoignent

★★★★★
★★★★★

Plans de cours Deep Learning (DL)

Nom du Cours
Durée
Aperçu
Nom du Cours
Durée
Aperçu
21 hours
Aperçu
Artificial Neural Network is a computational data model used in the development of Artificial Intelligence (AI) systems capable of performing "intelligent" tasks. Neural Networks are commonly used in Machine Learning (ML) applications, which are themselves one implementation of AI. Deep Learning is a subset of ML.
21 hours
Aperçu
Ce cours est un aperçu général de l’ Deep Learning sans approfondir les méthodes spécifiques. Il convient aux personnes qui souhaitent commencer à utiliser l'apprentissage en profondeur pour améliorer la précision de leurs prédictions.
21 hours
Aperçu
Le réseau de neurones artificiels est un modèle de données informatique utilisé dans le développement de systèmes d' Artificial Intelligence (AI) capables d'effectuer des tâches "intelligentes". Neural Networks sont couramment utilisés dans les applications Machine Learning (ML), qui sont elles-mêmes une implémentation de l'IA. Deep Learning est un sous-ensemble de ML.
28 hours
Aperçu
L'apprentissage automatique est une branche de l'intelligence artificielle dans laquelle les ordinateurs ont la capacité d'apprendre sans être explicitement programmé. L'apprentissage en profondeur est un sous-domaine de l'apprentissage automatique qui utilise des méthodes basées sur l'apprentissage de représentations de données et de structures telles que les réseaux de neurones.
21 hours
Aperçu
Caffe est un cadre d'apprentissage en profondeur conçu pour l'expression, la rapidité et la modularité.

Ce cours explore l’application de Caffe tant que cadre d’apprentissage approfondi pour la reconnaissance d’images en prenant comme exemple le MNIST.

Public

Ce cours convient aux chercheurs et ingénieurs Deep Learning intéressés par l'utilisation de Caffe tant que cadre.

Une fois ce cours terminé, les délégués seront en mesure de:

- comprendre la structure et les mécanismes de déploiement de Caffe
- effectuer des tâches d'installation / environnement de production / architecture et configuration
- évaluer la qualité du code, effectuer le débogage, la surveillance
- implémenter une production avancée telle que des modèles d'entraînement, implémenter des couches et se connecter
21 hours
Aperçu
Audience

This course is suitable for Deep Learning researchers and engineers interested in utilizing available tools (mostly open source) for analyzing computer images

This course provide working examples.
14 hours
Aperçu
Ce cours couvre l'IA (mettant l'accent sur l' Machine Learning et l' Deep Learning ) dans l'industrie Automotive . Cela aide à déterminer quelle technologie peut (potentiellement) être utilisée dans plusieurs situations de la voiture: de l'automatisation simple à la prise de décision autonome en passant par la reconnaissance d'images.
21 hours
Aperçu
Ce cours couvre l'IA (mettant l'accent sur l' Machine Learning et l' Deep Learning )
14 hours
Aperçu
OpenNN est une bibliothèque de classes open-source écrite en C ++ qui implémente des réseaux de neurones, pour une utilisation en apprentissage automatique.

Dans ce cours, nous allons passer en revue les principes des réseaux de neurones et utiliser OpenNN pour implémenter un exemple d'application.

Public
Les développeurs de logiciels et les programmeurs souhaitant créer des applications d'apprentissage approfondi.

Format du cours
Lecture et discussion associées à des exercices pratiques.
7 hours
Aperçu
In this instructor-led, live training, participants will learn how to set up and use OpenNMT to carry out translation of various sample data sets. The course starts with an overview of neural networks as they apply to machine translation. Participants will carry out live exercises throughout the course to demonstrate their understanding of the concepts learned and get feedback from the instructor.

By the end of this training, participants will have the knowledge and practice needed to implement a live OpenNMT solution.

Source and target language samples will be pre-arranged per the audience's requirements.

Format of the Course

- Part lecture, part discussion, heavy hands-on practice
21 hours
Aperçu
Type : Formation théorique avec applications décidées en amont avec les élèves sur Lasagne ou Keras selon le groupe pédagogique

Méthode pédagogique : présentation, échanges et études de cas

L’intelligence artificielle, après avoir bouleversé de nombreux domaines scientifiques, a commencé à révolutionner un grand nombre de secteurs économiques (industrie, médecine, communication, etc.). Néanmoins, sa présentation dans les grands media relève souvent du fantasme, très éloignée de ce que sont réellement les domaines du Machine Learning ou du Deep Learning. L’objet de cette formation est d’apporter à des ingénieurs ayant déjà une maîtrise des outils informatiques (dont une base de programmation logicielle) une introduction au Deep Learning ainsi qu’à ses différents domaines de spécialisation et donc aux principales architectures de réseau existant aujourd’hui. Si les bases mathématiques sont rappelées pendant le cours, un niveau de mathématique de type BAC+2 est recommandé pour plus de confort. Il est dans l’absolu possible de faire l’impasse sur l’axe mathématique pour ne conserver qu’une vision « système », mais cette approche limitera énormément votre compréhension du sujet.
7 hours
Aperçu
In this instructor-led, live training, participants will learn how to use Facebook NMT (Fairseq) to carry out translation of sample content.

By the end of this training, participants will have the knowledge and practice needed to implement a live Fairseq based machine translation solution.

Format of the course

- Part lecture, part discussion, heavy hands-on practice

Note

- If you wish to use specific source and target language content, please contact us to arrange.
21 hours
Aperçu
Microsoft Cognitive Toolkit 2.x (previously CNTK) is an open-source, commercial-grade toolkit that trains deep learning algorithms to learn like the human brain. According to Microsoft, CNTK can be 5-10x faster than TensorFlow on recurrent networks, and 2 to 3 times faster than TensorFlow for image-related tasks.

In this instructor-led, live training, participants will learn how to use Microsoft Cognitive Toolkit to create, train and evaluate deep learning algorithms for use in commercial-grade AI applications involving multiple types of data such as data, speech, text, and images.

By the end of this training, participants will be able to:

- Access CNTK as a library from within a Python, C#, or C++ program
- Use CNTK as a standalone machine learning tool through its own model description language (BrainScript)
- Use the CNTK model evaluation functionality from a Java program
- Combine feed-forward DNNs, convolutional nets (CNNs), and recurrent networks (RNNs/LSTMs)
- Scale computation capacity on CPUs, GPUs and multiple machines
- Access massive datasets using existing programming languages and algorithms

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice

Note

- If you wish to customize any part of this training, including the programming language of choice, please contact us to arrange.
21 hours
Aperçu
PaddlePaddle (PArallel Distributed Deep LEarning) is a scalable deep learning platform developed by Baidu.

In this instructor-led, live training, participants will learn how to use PaddlePaddle to enable deep learning in their product and service applications.

By the end of this training, participants will be able to:

- Set up and configure PaddlePaddle
- Set up a Convolutional Neural Network (CNN) for image recognition and object detection
- Set up a Recurrent Neural Network (RNN) for sentiment analysis
- Set up deep learning on recommendation systems to help users find answers
- Predict click-through rates (CTR), classify large-scale image sets, perform optical character recognition(OCR), rank searches, detect computer viruses, and implement a recommendation system.

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
7 hours
Aperçu
In this instructor-led, live training, participants will learn how to use DSSTNE to build a recommendation application.

By the end of this training, participants will be able to:

- Train a recommendation model with sparse datasets as input
- Scale training and prediction models over multiple GPUs
- Spread out computation and storage in a model-parallel fashion
- Generate Amazon-like personalized product recommendations
- Deploy a production-ready application that can scale at heavy workloads

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
7 hours
Aperçu
Tensor2Tensor (T2T) is a modular, extensible library for training AI models in different tasks, using different types of training data, for example: image recognition, translation, parsing, image captioning, and speech recognition. It is maintained by the Google Brain team.

In this instructor-led, live training, participants will learn how to prepare a deep-learning model to resolve multiple tasks.

By the end of this training, participants will be able to:

- Install tensor2tensor, select a data set, and train and evaluate an AI model
- Customize a development environment using the tools and components included in Tensor2Tensor
- Create and use a single model to concurrently learn a number of tasks from multiple domains
- Use the model to learn from tasks with a large amount of training data and apply that knowledge to tasks where data is limited
- Obtain satisfactory processing results using a single GPU

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 hours
Aperçu
OpenFace is Python and Torch based open-source, real-time facial recognition software based on Google's FaceNet research.

In this instructor-led, live training, participants will learn how to use OpenFace's components to create and deploy a sample facial recognition application.

By the end of this training, participants will be able to:

- Work with OpenFace's components, including dlib, OpenVC, Torch, and nn4 to implement face detection, alignment, and transformation
- Apply OpenFace to real-world applications such as surveillance, identity verification, virtual reality, gaming, and identifying repeat customers, etc.

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
Aperçu
In this instructor-led, live training in France, participants will learn the most relevant and cutting-edge machine learning techniques in Python as they build a series of demo applications involving image, music, text, and financial data.

By the end of this training, participants will be able to:

- Implement machine learning algorithms and techniques for solving complex problems.
- Apply deep learning and semi-supervised learning to applications involving image, music, text, and financial data.
- Push Python algorithms to their maximum potential.
- Use libraries and packages such as NumPy and Theano.
21 hours
Aperçu
In this instructor-led, live training, participants will learn advanced techniques for Machine Learning with R as they step through the creation of a real-world application.

By the end of this training, participants will be able to:

- Understand and implement unsupervised learning techniques
- Apply clustering and classification to make predictions based on real world data.
- Visualize data to quicly gain insights, make decisions and further refine analysis.
- Improve the performance of a machine learning model using hyper-parameter tuning.
- Put a model into production for use in a larger application.
- Apply advanced machine learning techniques to answer questions involving social network data, big data, and more.
14 hours
Aperçu
In this instructor-led, live training, participants will learn how to use Matlab to design, build, and visualize a convolutional neural network for image recognition.

By the end of this training, participants will be able to:

- Build a deep learning model
- Automate data labeling
- Work with models from Caffe and TensorFlow-Keras
- Train data using multiple GPUs, the cloud, or clusters

Audience

- Developers
- Engineers
- Domain experts

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 hours
Aperçu
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep learning is a subfield of machine learning which uses methods based on learning data representations and structures such as neural networks. R is a popular programming language in the financial industry. It is used in financial applications ranging from core trading programs to risk management systems.

In this instructor-led, live training, participants will learn how to implement deep learning models for finance using R as they step through the creation of a deep learning stock price prediction model.

By the end of this training, participants will be able to:

- Understand the fundamental concepts of deep learning
- Learn the applications and uses of deep learning in finance
- Use R to create deep learning models for finance
- Build their own deep learning stock price prediction model using R

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 hours
Aperçu
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep learning is a subfield of machine learning which uses methods based on learning data representations and structures such as neural networks. Python is a high-level programming language famous for its clear syntax and code readability.

In this instructor-led, live training, participants will learn how to implement deep learning models for banking using Python as they step through the creation of a deep learning credit risk model.

By the end of this training, participants will be able to:

- Understand the fundamental concepts of deep learning
- Learn the applications and uses of deep learning in banking
- Use Python, Keras, and TensorFlow to create deep learning models for banking
- Build their own deep learning credit risk model using Python

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 hours
Aperçu
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep learning is a subfield of machine learning which uses methods based on learning data representations and structures such as neural networks. R is a popular programming language in the financial industry. It is used in financial applications ranging from core trading programs to risk management systems.

In this instructor-led, live training, participants will learn how to implement deep learning models for banking using R as they step through the creation of a deep learning credit risk model.

By the end of this training, participants will be able to:

- Understand the fundamental concepts of deep learning
- Learn the applications and uses of deep learning in banking
- Use R to create deep learning models for banking
- Build their own deep learning credit risk model using R

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 hours
Aperçu
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep learning is a subfield of machine learning which uses methods based on learning data representations and structures such as neural networks. Python is a high-level programming language famous for its clear syntax and code readability.

In this instructor-led, live training, participants will learn how to implement deep learning models for finance using Python as they step through the creation of a deep learning stock price prediction model.

By the end of this training, participants will be able to:

- Understand the fundamental concepts of deep learning
- Learn the applications and uses of deep learning in finance
- Use Python, Keras, and TensorFlow to create deep learning models for finance
- Build their own deep learning stock price prediction model using Python

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
Aperçu
Deep Reinforcement Learning refers to the ability of an "artificial agent" to learn by trial-and-error and rewards-and-punishments. An artificial agent aims to emulate a human's ability to obtain and construct knowledge on its own, directly from raw inputs such as vision. To realize reinforcement learning, deep learning and neural networks are used. Reinforcement learning is different from machine learning and does not rely on supervised and unsupervised learning approaches.

In this instructor-led, live training, participants will learn the fundamentals of Deep Reinforcement Learning as they step through the creation of a Deep Learning Agent.

By the end of this training, participants will be able to:

- Understand the key concepts behind Deep Reinforcement Learning and be able to distinguish it from Machine Learning
- Apply advanced Reinforcement Learning algorithms to solve real-world problems
- Build a Deep Learning Agent

Audience

- Developers
- Data Scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
Aperçu
Introduction:

Deep learning is becoming a principal component of future product design that wants to incorporate artificial intelligence at the heart of their models. Within the next 5 to 10 years, deep learning development tools, libraries, and languages will become standard components of every software development toolkit. So far Google, Sales Force, Facebook, Amazon have been successfully using deep learning AI to boost their business. Applications ranged from automatic machine translation, image analytics, video analytics, motion analytics, generating targeted advertisement and many more.

This coursework is aimed for those organizations who want to incorporate Deep Learning as very important part of their product or service strategy. Below is the outline of the deep learning course which we can customize for different levels of employees/stakeholders in an organization.

Target Audience:

( Depending on target audience, course materials will be customized)

Executives

A general overview of AI and how it fits into corporate strategy, with breakout sessions on strategic planning, technology roadmaps, and resource allocation to ensure maximum value.

Project Managers

How to plan out an AI project, including data gathering and evaluation, data cleanup and verification, development of a proof-of-concept model, integration into business processes, and delivery across the organization.

Developers

In-depth technical trainings, with focus on neural networks and deep learning, image and video analytics (CNNs), sound and text analytics (NLP), and bringing AI into existing applications.

Salespersons

A general overview of AI and how it can satisfy customer needs, value propositions for various products and services, and how to allay fears and promote the benefits of AI.
14 hours
Aperçu
This classroom based training session will contain presentations and computer based examples and case study exercises to undertake with relevant neural and deep network libraries
14 hours
Aperçu
Machine Learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep Learning is a subfield of Machine Learning which attempts to mimic the workings of the human brain in making decisions. It is trained with data in order to automatically provide solutions to problems. Deep Learning provides vast opportunities for the medical industry which is sitting on a data goldmine.

In this instructor-led, live training, participants will take part in a series of discussions, exercises and case-study analysis to understand the fundamentals of Deep Learning. The most important Deep Learning tools and techniques will be evaluated and exercises will be carried out to prepare participants for carrying out their own evaluation and implementation of Deep Learning solutions within their organizations.

By the end of this training, participants will be able to:

- Understand the fundamentals of Deep Learning
- Learn Deep Learning techniques and their applications in the industry
- Examine issues in medicine which can be solved by Deep Learning technologies
- Explore Deep Learning case studies in medicine
- Formulate a strategy for adopting the latest technologies in Deep Learning for solving problems in medicine

Audience

- Managers
- Medical professionals in leadership roles

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice

Note

- To request a customized training for this course, please contact us to arrange.
28 hours
Aperçu
In this instructor-led, live training in France, participants will learn how to implement deep learning models for telecom using Python as they step through the creation of a deep learning credit risk model.

By the end of this training, participants will be able to:

- Understand the fundamental concepts of deep learning.
- Learn the applications and uses of deep learning in telecom.
- Use Python, Keras, and TensorFlow to create deep learning models for telecom.
- Build their own deep learning customer churn prediction model using Python.
14 hours
Aperçu
This instructor-led, live training in France (online or onsite) is aimed at software engineers who wish to program in Python with OpenCV 4 for deep learning.

By the end of this training, participants will be able to:

- View, load, and classify images and videos using OpenCV 4.
- Implement deep learning in OpenCV 4 with TensorFlow and Keras.
- Run deep learning models and generate impactful reports from images and videos.

Prochains cours Deep Learning (DL)

Weekend Deep Learning (DL) cours, Soir DL (Deep Learning) formation, Deep Learning (DL) stage d’entraînement, Deep Learning (DL) formateur à distance, Deep Learning (DL) formateur en ligne, Deep Learning (DL) formateur Online, Deep Learning (DL) cours en ligne, DL (Deep Learning) cours à distance, DL (Deep Learning) professeur à distance, DL (Deep Learning) visioconférence, Deep Learning stage d’entraînement intensif, Deep Learning (DL) formation accélérée, Deep Learning (DL) formation intensive, Formation inter Deep Learning (DL), Formation intra DL (Deep Learning), Formation intra Enteprise Deep Learning, Formation inter Entreprise Deep Learning (DL), Weekend DL (Deep Learning) formation, Soir Deep Learning cours, Deep Learning (DL) coaching, Deep Learning entraînement, DL (Deep Learning) préparation, Deep Learning instructeur, DL (Deep Learning) professeur, DL (Deep Learning) formateur, Deep Learning (DL) stage de formation, Deep Learning (DL) cours, Deep Learning (DL) sur place, DL (Deep Learning) formations privées, Deep Learning (DL) formation privée, Deep Learning (DL) cours particulier, Deep Learning (DL) cours particuliers

Réduction spéciale

Newsletter offres spéciales

Nous respectons le caractère privé de votre adresse mail. Nous ne divulguerons ni ne vendrons votre adresse email à quiconque
Vous pouvez toujours modifier vos préférences ou vous désinscrire complètement.

Nos clients

is growing fast!

Nous recherchons des formateurs alliant compétences techniques et savoir-être en France!

En tant que formateur NobleProg, vous serez responsable de :

  • délivrer des formations dans le monde entier
  • préparer les supports de cours
  • apporter des améliorations au fil des formations
  • fournir des prestations de conseil

Pour le moment, nous nous concentrons sur les domaines suivants :

  • Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
  • SOA, BPM, BPMN
  • Hibernate/Spring, Scala, Spark, jBPM, Drools
  • R, Python
  • Mobile Development (iOS, Android)
  • LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
  • Si vous avez de la patience et de l'empathie pour les personnes que vous formez, vous êtes fait pour rejoindre NobleProg.

Pour postuler, veuillez s'il vous plaît créer votre profil formateur en cliquant sur le lien ci-dessous :

Postuler ici

This site in other countries/regions