Les formations TensorFlow

Les formations TensorFlow

Les cours de formation TensorFlow direct, organisés par des instructeurs locaux, expliquent, par des discussions interactives et des exercices pratiques, comment utiliser le système TensorFlow pour faciliter la recherche en apprentissage automatique et faciliter la transition rapide d’un prototype à un système de production. TensorFlow formation TensorFlow est disponible en "formation sur site en direct" ou "formation en direct à distance". La formation en direct sur site peut être effectuée localement chez le client à France ou dans des centres de formation d'entreprise NobleProg dans France . La formation à distance en direct est réalisée au moyen d'un poste de travail distant et interactif. NobleProg - Votre prestataire de formation local

Machine Translated

Nos Clients témoignent

★★★★★
★★★★★

Plans de cours TensorFlow

Nom du Cours
Durée
Aperçu
Nom du Cours
Durée
Aperçu
21 hours
Aperçu
TensorFlow est une API de deuxième génération de la bibliothèque de logiciels open source de Go ogle pour Deep Learning . Le système est conçu pour faciliter la recherche en apprentissage automatique et faciliter la transition rapide d'un prototype de recherche à un système de production.

Public

Ce cours est destiné aux ingénieurs souhaitant utiliser TensorFlow pour leurs projets d' Deep Learning .

Une fois ce cours terminé, les délégués:

- comprendre la structure et les mécanismes de déploiement de TensorFlow
- être capable d'effectuer des tâches d'installation / environnement de production / architecture et configuration
- être capable d'évaluer la qualité du code, effectuer le débogage, la surveillance
- être capable de mettre en œuvre une production avancée comme des modèles de formation, la création de graphiques et la journalisation
28 hours
Aperçu
Ce cours explore, avec des exemples spécifiques, l’application de Tensor Flow aux objectifs de la reconnaissance d’image.

Public

Ce cours est destiné aux ingénieurs qui souhaitent utiliser TensorFlow aux fins de la reconnaissance d'image.

Une fois ce cours terminé, les délégués seront en mesure de:

- comprendre la structure et les mécanismes de déploiement de TensorFlow
- effectuer des tâches d'installation / environnement de production / architecture et configuration
- évaluer la qualité du code, effectuer le débogage, la surveillance
- implémenter une production avancée telle que des modèles de formation, la création de graphiques et l'enregistrement
35 hours
Aperçu
TensorFlow™ is an open source software library for numerical computation using data flow graphs.

SyntaxNet is a neural-network Natural Language Processing framework for TensorFlow.

Word2Vec is used for learning vector representations of words, called "word embeddings". Word2vec is a particularly computationally-efficient predictive model for learning word embeddings from raw text. It comes in two flavors, the Continuous Bag-of-Words model (CBOW) and the Skip-Gram model (Chapter 3.1 and 3.2 in Mikolov et al.).

Used in tandem, SyntaxNet and Word2Vec allows users to generate Learned Embedding models from Natural Language input.

Audience

This course is targeted at Developers and engineers who intend to work with SyntaxNet and Word2Vec models in their TensorFlow graphs.

After completing this course, delegates will:

- understand TensorFlow’s structure and deployment mechanisms
- be able to carry out installation / production environment / architecture tasks and configuration
- be able to assess code quality, perform debugging, monitoring
- be able to implement advanced production like training models, embedding terms, building graphs and logging
21 hours
Aperçu
Audience

This course is suitable for Deep Learning researchers and engineers interested in utilizing available tools (mostly open source) for analyzing computer images

This course provide working examples.
28 hours
Aperçu
Ce cours vous donnera des connaissances sur les réseaux de neurones et plus généralement sur les algorithmes d’apprentissage automatique, d’apprentissage approfondi (algorithmes et applications).

Cette formation met davantage l'accent sur les principes fondamentaux, mais vous aidera à choisir la technologie TensorFlow : TensorFlow , Caffe , Teano, DeepDrive, Keras , etc. Les exemples sont réalisés dans TensorFlow .
7 hours
Aperçu
In this instructor-led, live training in France, participants will learn how to take advantage of the innovations in TPU processors to maximize the performance of their own AI applications.

By the end of the training, participants will be able to:

- Train various types of neural networks on large amounts of data.
- Use TPUs to speed up the inference process by up to two orders of magnitude.
- Utilize TPUs to process intensive applications such as image search, cloud vision and photos.
14 hours
Aperçu
Embedding Projector is an open-source web application for visualizing the data used to train machine learning systems. Created by Google, it is part of TensorFlow.

This instructor-led, live training introduces the concepts behind Embedding Projector and walks participants through the setup of a demo project.

By the end of this training, participants will be able to:

- Explore how data is being interpreted by machine learning models
- Navigate through 3D and 2D views of data to understand how a machine learning algorithm interprets it
- Understand the concepts behind Embeddings and their role in representing mathematical vectors for images, words and numerals.
- Explore the properties of a specific embedding to understand the behavior of a model
- Apply Embedding Project to real-world use cases such building a song recommendation system for music lovers

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
7 hours
Aperçu
In this instructor-led, live training in France (online or onsite), participants will learn how to configure and use TensorFlow Serving to deploy and manage ML models in a production environment.

By the end of this training, participants will be able to:

- Train, export and serve various TensorFlow models.
- Test and deploy algorithms using a single architecture and set of APIs.
- Extend TensorFlow Serving to serve other types of models beyond TensorFlow models.
35 hours
Aperçu
This course begins with giving you conceptual knowledge in neural networks and generally in machine learning algorithm, deep learning (algorithms and applications).

Part-1(40%) of this training is more focus on fundamentals, but will help you choosing the right technology : TensorFlow, Caffe, Theano, DeepDrive, Keras, etc.

Part-2(20%) of this training introduces Theano - a python library that makes writing deep learning models easy.

Part-3(40%) of the training would be extensively based on Tensorflow - 2nd Generation API of Google's open source software library for Deep Learning. The examples and handson would all be made in TensorFlow.

Audience

This course is intended for engineers seeking to use TensorFlow for their Deep Learning projects

After completing this course, delegates will:

-

have a good understanding on deep neural networks(DNN), CNN and RNN

-

understand TensorFlow’s structure and deployment mechanisms

-

be able to carry out installation / production environment / architecture tasks and configuration

-

be able to assess code quality, perform debugging, monitoring

-

be able to implement advanced production like training models, building graphs and logging
28 hours
Aperçu
In this instructor-led, live training in France, participants will learn to use Python libraries for NLP as they create an application that processes a set of pictures and generates captions.

By the end of this training, participants will be able to:

- Design and code DL for NLP using Python libraries.
- Create Python code that reads a substantially huge collection of pictures and generates keywords.
- Create Python Code that generates captions from the detected keywords.
28 hours
Aperçu
This is a 4 day course introducing AI and it's application. There is an option to have an additional day to undertake an AI project on completion of this course.
21 hours
Aperçu
This instructor-led, live training in France (online or onsite) is aimed at developers and data scientists who wish to use Tensorflow 2.x to build predictors, classifiers, generative models, neural networks and so on.

By the end of this training, participants will be able to:

- Install and configure TensorFlow 2.x.
- Understand the benefits of TensorFlow 2.x over previous versions.
- Build deep learning models.
- Implement an advanced image classifier.
- Deploy a deep learning model to the cloud, mobile and IoT devices.
14 hours
Aperçu
This instructor-led, live training in France (online or onsite) is aimed at data scientists who wish to use TensorFlow.js to identify patterns and generate predictions through machine learning models.

By the end of this training, participants will be able to:

- Build and train machine learning models with TensorFlow.js.
- Run existing machine learning models in the browser or under Node.js.
- Retrain pre-existing machine learning using custom data.
14 hours
Aperçu
This instructor-led, live training in France (online or onsite) is aimed at data scientists who wish to use TensorFlow to analyze potential fraud data.

By the end of this training, participants will be able to:

- Create a fraud detection model in Python and TensorFlow.
- Build linear regressions and linear regression models to predict fraud.
- Develop an end-to-end AI application for analyzing fraud data.
21 hours
Aperçu
This instructor-led, live training in France (online or onsite) is aimed at data scientists who wish to go from training a single ML model to deploying many ML models to production.

By the end of this training, participants will be able to:

- Install and configure TFX and supporting third-party tools.
- Use TFX to create and manage a complete ML production pipeline.
- Work with TFX components to carry out modeling, training, serving inference, and managing deployments.
- Deploy machine learning features to web applications, mobile applications, IoT devices and more.
21 hours
Aperçu
This instructor-led, live training in France (online or onsite) is aimed at developers who wish to use TensorFlow Lite to deploy deep learning models on embedded devices.

By the end of this training, participants will be able to:

- Install and configure Tensorflow Lite on an embedded device.
- Understand the concepts and components underlying TensorFlow Lite.
- Convert existing models to TensorFlow Lite format for execution on embedded devices.
- Work within the limitations of small devices and TensorFlow Lite, while learning how to expand the scope of operations that can be run.
- Deploy a deep learning model on an embedded device running Linux.
21 hours
Aperçu
This instructor-led, live training in France (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop mobile applications with deep learning capabilities.

By the end of this training, participants will be able to:

- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow, machine learning and deep learning.
- Load TensorFlow Models onto an Android device.
- Enable deep learning and machine learning functionality such as computer vision and natural language recognition in a mobile application.
21 hours
Aperçu
This instructor-led, live training in France (online or onsite) is aimed at engineers who wish to write, load and run machine learning models on very small embedded devices.

By the end of this training, participants will be able to:

- Install TensorFlow Lite.
- Load machine learning models onto an embedded device to enable it to detect speech, classify images, etc.
- Add AI to hardware devices without relying on network connectivity.
21 hours
Aperçu
This instructor-led, live training in (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop iOS mobile applications with deep learning capabilities.

By the end of this training, participants will be able to:

- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow and machine learning on mobile devices.
- Load TensorFlow Models onto an iOS device.
- Run an iOS application capable of detecting and classifying an object captured through the device's camera.

Prochains cours TensorFlow

Weekend TensorFlow cours, Soir TensorFlow formation, TensorFlow stage d’entraînement, TensorFlow formateur à distance, TensorFlow formateur en ligne, TensorFlow formateur Online, TensorFlow cours en ligne, TensorFlow cours à distance, TensorFlow professeur à distance, TensorFlow visioconférence, TensorFlow stage d’entraînement intensif, TensorFlow formation accélérée, TensorFlow formation intensive, Formation inter TensorFlow, Formation intra TensorFlow, Formation intra Enteprise TensorFlow, Formation inter Entreprise TensorFlow, Weekend TensorFlow formation, Soir TensorFlow cours, TensorFlow coaching, TensorFlow entraînement, TensorFlow préparation, TensorFlow instructeur, TensorFlow professeur, TensorFlow formateur, TensorFlow stage de formation, TensorFlow cours, TensorFlow sur place, TensorFlow formations privées, TensorFlow formation privée, TensorFlow cours particulier, TensorFlow cours particuliers

Réduction spéciale

Newsletter offres spéciales

Nous respectons le caractère privé de votre adresse mail. Nous ne divulguerons ni ne vendrons votre adresse email à quiconque
Vous pouvez toujours modifier vos préférences ou vous désinscrire complètement.

Nos clients

is growing fast!

Nous recherchons des formateurs alliant compétences techniques et savoir-être en France!

En tant que formateur NobleProg, vous serez responsable de :

  • délivrer des formations dans le monde entier
  • préparer les supports de cours
  • apporter des améliorations au fil des formations
  • fournir des prestations de conseil

Pour le moment, nous nous concentrons sur les domaines suivants :

  • Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
  • SOA, BPM, BPMN
  • Hibernate/Spring, Scala, Spark, jBPM, Drools
  • R, Python
  • Mobile Development (iOS, Android)
  • LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
  • Si vous avez de la patience et de l'empathie pour les personnes que vous formez, vous êtes fait pour rejoindre NobleProg.

Pour postuler, veuillez s'il vous plaît créer votre profil formateur en cliquant sur le lien ci-dessous :

Postuler ici

This site in other countries/regions