
Les cours de formation TensorFlow direct, organisés par des instructeurs locaux, expliquent, par des discussions interactives et des exercices pratiques, comment utiliser le système TensorFlow pour faciliter la recherche en apprentissage automatique et faciliter la transition rapide d’un prototype à un système de production. TensorFlow formation TensorFlow est disponible en "formation sur site en direct" ou "formation en direct à distance". La formation en direct sur site peut être effectuée localement chez le client à France ou dans des centres de formation d'entreprise NobleProg dans France . La formation à distance en direct est réalisée au moyen d'un poste de travail distant et interactif. NobleProg - Votre prestataire de formation local
Machine Translated
Nos Clients témoignent
J'ai vraiment apprécié les réponses claires de Chris à nos questions.
Léo Dubus
Formation: Réseau de Neurones, les Fondamentaux en utilisant TensorFlow comme Exemple
Machine Translated
J'ai généralement apprécié le formateur compétent.
Sridhar Voorakkara
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
J'ai été stupéfait par la qualité de ce cours - je dirais que c'était la norme universitaire.
David Relihan
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Très bon aperçu général. Go historique des raisons pour lesquelles Tensorflow fonctionne comme il le fait.
Kieran Conboy
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
J'ai aimé les possibilités de poser des questions et d'obtenir des explications plus approfondies de la théorie.
Sharon Ruane
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Approche très actualisée ou IPC (flux tensoriel, ère, apprendre) pour faire de l'apprentissage automatique.
Paul Lee
Formation: TensorFlow for Image Recognition
Machine Translated
Compte tenu des perspectives de la technologie: quelle technologie / processus pourrait devenir plus important dans le futur; voir à quoi la technologie peut être utilisée
Commerzbank AG
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
J'ai bénéficié de la sélection de sujets. Style de formation. Orientation pratique
Commerzbank AG
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Un large éventail de sujets couverts et une connaissance approfondie des dirigeants.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
manque
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
Grandes connaissances théoriques et pratiques des conférenciers. Communicativeness des formateurs. Pendant le cours, vous pouvez poser des questions et obtenir des réponses satisfaisantes.
Kamil Kurek - ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
Partie pratique, où nous avons implémenté des algorithmes. Cela a permis une meilleure compréhension du sujet.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
exercices et exemples mis en oeuvre
Paweł Orzechowski - ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
Exemples et problèmes discutés.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
Connaissances substantielles, engagement, une manière passionnée de transférer des connaissances. Exemples pratiques après un cours théorique.
Janusz Chrobot - ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
Exercices pratiques préparés par M. Maciej
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
Identification humaine et détection de mauvais point de carte de circuit
王 春柱 - 中移物联网
Formation: Deep Learning for NLP (Natural Language Processing)
Machine Translated
faire la démonstration de
中移物联网
Formation: Deep Learning for NLP (Natural Language Processing)
Machine Translated
A propos de la surface faciale.
中移物联网
Formation: Deep Learning for NLP (Natural Language Processing)
Machine Translated
Beaucoup de conseils pratiques
Pawel Dawidowski - ABB Sp. z o.o.
Formation: Deep Learning with TensorFlow
Machine Translated
Beaucoup d'informations liées à la mise en œuvre de solutions
Michał Smolana - ABB Sp. z o.o.
Formation: Deep Learning with TensorFlow
Machine Translated
Une multitude de conseils pratiques et de connaissances du conférencier parmi un large éventail de problèmes d’IA / d’informatique / SQL / IdO.
ABB Sp. z o.o.
Formation: Deep Learning with TensorFlow
Machine Translated
J'ai commencé avec une connaissance quasi nulle et, à la fin, j'ai été capable de construire et de former mes propres réseaux.
Huawei Technologies Duesseldorf GmbH
Formation: TensorFlow for Image Recognition
Machine Translated
Tomasz connaît vraiment bien l’information et le parcours a été bien rythmé.
Raju Krishnamurthy - Google
Formation: TensorFlow Extended (TFX)
Machine Translated
Plans de cours TensorFlow
This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop iOS mobile applications with deep learning capabilities.
By the end of this training, participants will be able to:
- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow and machine learning on mobile devices.
- Load TensorFlow Models onto an iOS device.
- Run an iOS application capable of detecting and classifying an object captured through the device's camera.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
SyntaxNet est une structure de traitement de langage naturel par réseau de neurones pour TensorFlow .
Word 2Vec est utilisé pour l'apprentissage des représentations vectorielles de mots, appelées "imbrications de mots". Word 2vec est un modèle prédictif particulièrement efficace en calcul pour l’intégration de mots à partir de texte brut. Il se décline en deux saveurs, le sac-of-continu Word modèle s (CBOW) et le modèle Skip-Gram (Chapitre 3.1 et 3.2 dans Mikolov et al.).
Utilisés en tandem, SyntaxNet et Word 2Vec permettent aux utilisateurs de générer des modèles d’apprentissage intégré à partir de l’entrée en langage naturel.
Public
Ce cours est destiné aux développeurs et aux ingénieurs souhaitant travailler avec les modèles SyntaxNet et Word 2Vec dans leurs graphiques TensorFlow .
Une fois ce cours terminé, les délégués:
- comprendre la structure et les mécanismes de déploiement de TensorFlow
- être capable d'effectuer des tâches d'installation / environnement de production / architecture et configuration
- être capable d'évaluer la qualité du code, effectuer le débogage, la surveillance
- être capable de mettre en œuvre une production avancée telle que des modèles de formation, des conditions d'intégration, la création de graphiques et la journalisation
This instructor-led, live training (online or onsite) is aimed at data scientists who wish to go from training a single ML model to deploying many ML models to production.
By the end of this training, participants will be able to:
- Install and configure TFX and supporting third-party tools.
- Use TFX to create and manage a complete ML production pipeline.
- Work with TFX components to carry out modeling, training, serving inference, and managing deployments.
- Deploy machine learning features to web applications, mobile applications, IoT devices and more.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Public
Ce cours est destiné aux ingénieurs qui souhaitent utiliser TensorFlow aux fins de la reconnaissance d'image.
Une fois ce cours terminé, les délégués seront en mesure de:
- comprendre la structure et les mécanismes de déploiement de TensorFlow
- effectuer des tâches d'installation / environnement de production / architecture et configuration
- évaluer la qualité du code, effectuer le débogage, la surveillance
- implémenter une production avancée telle que des modèles de formation, la création de graphiques et l'enregistrement
Public
Ce cours est destiné aux ingénieurs souhaitant utiliser TensorFlow pour leurs projets d' Deep Learning .
Une fois ce cours terminé, les délégués:
- comprendre la structure et les mécanismes de déploiement de TensorFlow
- être capable d'effectuer des tâches d'installation / environnement de production / architecture et configuration
- être capable d'évaluer la qualité du code, effectuer le débogage, la surveillance
- être capable de mettre en œuvre une production avancée comme des modèles de formation, la création de graphiques et la journalisation
This instructor-led, live training (online or onsite) is aimed at engineers who wish to write, load and run machine learning models on very small embedded devices.
By the end of this training, participants will be able to:
- Install TensorFlow Lite.
- Load machine learning models onto an embedded device to enable it to detect speech, classify images, etc.
- Add AI to hardware devices without relying on network connectivity.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop mobile applications with deep learning capabilities.
By the end of this training, participants will be able to:
- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow, machine learning and deep learning.
- Load TensorFlow Models onto an Android device.
- Enable deep learning and machine learning functionality such as computer vision and natural language recognition in a mobile application.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
- To learn more about TensorFlow, please visit: https://www.tensorflow.org/lite/
This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to deploy deep learning models on embedded devices.
By the end of this training, participants will be able to:
- Install and configure Tensorflow Lite on an embedded device.
- Understand the concepts and components underlying TensorFlow Lite.
- Convert existing machine learning models to TensorFlow Lite format for execution on embedded devices.
- Work within the limitations of small devices and TensorFlow Lite, while learning how to expand their default capabilities.
- Deploy deep learning models on embedded devices running Linux to solve physical world problems such as recognizing images and voice, predicting patterns, and initiating movements and responses from robots and other embedded systems in the field.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use TensorFlow.js to identify patterns and generate predictions through machine learning models.
By the end of this training, participants will be able to:
- Build and train machine learning models with TensorFlow.js.
- Run machine learning models in the browser or under Node.js.
- Retrain pre-existing machine learning models using custom data.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Cette formation en direct, animée par un instructeur (sur site ou à distance), est destinée aux développeurs et aux experts en informatique qui souhaitent utiliser Tensorflow 2.0 pour créer des prédicteurs, des classificateurs, des modèles génératifs, des réseaux de neurones, etc.
À la fin de cette formation, les participants seront en mesure de:
- Installez et configurez TensorFlow 2.0.
- Comprenez les avantages de TensorFlow 2.0 par rapport aux versions précédentes.
- Construire des modèles d'apprentissage en profondeur.
- Implémenter un classificateur d'image avancé.
- Déployez un modèle d'apprentissage approfondi sur le cloud, les appareils mobiles et l'IoT.
Format du cours
- Conférence interactive et discussion.
- Beaucoup d'exercices et de pratique.
- Mise en œuvre pratique dans un environnement de laboratoire réel.
Options de personnalisation du cours
- Pour demander une formation personnalisée pour ce cours, veuillez nous contacter pour organiser cela.
- Pour en savoir plus sur TensorFlow , visitez le site: https://www.tensorflow.org/
Cette formation met davantage l'accent sur les principes fondamentaux, mais vous aidera à choisir la technologie TensorFlow : TensorFlow , Caffe , Teano, DeepDrive, Keras , etc. Les exemples sont réalisés dans TensorFlow .
This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use TensorFlow to analyze potential fraud data.
By the end of this training, participants will be able to:
- Create a fraud detection model in Python and TensorFlow.
- Build linear regressions and linear regression models to predict fraud.
- Develop an end-to-end AI application for analyzing fraud data.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Ce cours convient aux chercheurs et ingénieurs Deep Learning intéressés par l'utilisation des outils disponibles (principalement open source) pour l'analyse d'images informatiques.
Ce cours fournit des exemples de travail.
La partie 1 (40%) de cette formation met davantage l'accent sur les principes fondamentaux, mais vous aidera à choisir la bonne technologie: TensorFlow , Caffe , Theano, DeepDrive, Keras , etc.
La partie 2 (20%) de cette formation présente Theano, une bibliothèque python qui facilite l’écriture de modèles d’apprentissage approfondi.
La partie 3 (40%) de la formation serait largement basée sur Tensorflow - API de deuxième génération de la bibliothèque de logiciels open source de Go ogle pour Deep Learning . Les exemples et handson seraient tous fabriqués dans TensorFlow .
Public
Ce cours est destiné aux ingénieurs souhaitant utiliser TensorFlow pour leurs projets d' Deep Learning .
Une fois ce cours terminé, les délégués:
-
avoir une bonne compréhension des réseaux de neurones profonds (DNN), CNN et RNN
-
comprendre la structure et les mécanismes de déploiement de TensorFlow
-
être capable d'effectuer des tâches d'installation / environnement de production / architecture et configuration
-
être capable d'évaluer la qualité du code, effectuer le débogage, la surveillance
-
être capable de mettre en œuvre une production avancée comme des modèles de formation, la création de graphiques et la journalisation