Les formations Réseaux Neurones | Les formations Neural Networks
Formations Réseaux Neurones, Neural Networks en Anglais. Un Réseau Neurones est un ensemble de neurones formels interconnectés permettant de résoudre des problèmes complexes comme la reconnaissance des formes ou le traitement du langage naturel, grâce à l'ajustement des coefficients de pondération dans une phase d'apprentissage.
Nos Clients témoignent
★★★★★
★★★★★
J'ai vraiment apprécié les réponses claires de Chris à nos questions.
Léo Dubus
Formation: Réseau de Neurones, les Fondamentaux en utilisant TensorFlow comme Exemple
Machine Translated
Les échanges informels que nous avons eus au cours des conférences m’ont vraiment aidé à approfondir ma compréhension du sujet
Explore
Formation: Deep Reinforcement Learning with Python
Machine Translated
C'était très interactif et plus détendu et informel que prévu. Nous avons couvert de nombreux sujets dans le temps et le formateur a toujours été réceptif à parler plus en détail ou plus généralement des sujets et de leurs relations. Je pense que la formation m'a donné les outils pour continuer à apprendre, par opposition à une session unique où l'apprentissage s'arrête une fois que vous avez terminé, ce qui est très important compte tenu de l'ampleur et de la complexité du sujet.
Jonathan Blease
Formation: Artificial Neural Networks, Machine Learning, Deep Thinking
Machine Translated
Ann a créé un environnement idéal pour poser des questions et apprendre. Nous nous sommes beaucoup amusés et avons aussi beaucoup appris en même temps.
Gudrun Bickelq
Formation: Introduction to the use of neural networks
Machine Translated
La partie interactive, adaptée à nos besoins spécifiques.
Thomas Stocker
Formation: Introduction to the use of neural networks
Machine Translated
J'ai généralement apprécié le formateur compétent.
Sridhar Voorakkara
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
J'ai été stupéfait par la qualité de ce cours - je dirais que c'était la norme universitaire.
David Relihan
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Très bon aperçu général. Go historique des raisons pour lesquelles Tensorflow fonctionne comme il le fait.
Kieran Conboy
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
J'ai aimé les possibilités de poser des questions et d'obtenir des explications plus approfondies de la théorie.
Sharon Ruane
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Le formateur a très facilement expliqué des sujets difficiles et avancés.
Leszek K
Formation: Artificial Intelligence Overview
Machine Translated
J'ai aimé les nouvelles connaissances sur l'apprentissage en machine profonde.
Josip Arneric
Formation: Neural Network in R
Machine Translated
Nous avons acquis des connaissances sur NN en général et ce qui était le plus intéressant pour moi, c’était les nouveaux types de NN qui sont populaires de nos jours.
Tea Poklepovic
Formation: Neural Network in R
Machine Translated
J'ai surtout apprécié les graphiques en R :))).
Faculty of Economics and Business Zagreb
Formation: Neural Network in R
Machine Translated
Très souple.
Frank Ueltzhöffer
Formation: Artificial Neural Networks, Machine Learning and Deep Thinking
Machine Translated
J'ai généralement apprécié la flexibilité.
Werner Philipp
Formation: Artificial Neural Networks, Machine Learning and Deep Thinking
Machine Translated
Compte tenu des perspectives de la technologie: quelle technologie / processus pourrait devenir plus important dans le futur; voir à quoi la technologie peut être utilisée
Commerzbank AG
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
J'ai bénéficié de la sélection de sujets. Style de formation. Orientation pratique
Commerzbank AG
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Communication avec des conférenciers
文欣 张
Formation: Artificial Neural Networks, Machine Learning, Deep Thinking
Machine Translated
Comme ça
lisa xie
Formation: Artificial Neural Networks, Machine Learning, Deep Thinking
Machine Translated
beaucoup d'exercices que je peux utiliser directement dans mon travail.
Alior Bank S.A.
Formation: Sieci Neuronowe w R
Machine Translated
Exemples sur des données réelles
Alior Bank S.A.
Formation: Sieci Neuronowe w R
Machine Translated
neuralnet, pROC dans une boucle.
Alior Bank S.A.
Formation: Sieci Neuronowe w R
Machine Translated
Un large éventail de sujets couverts et une connaissance approfondie des dirigeants.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
manque
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
Grandes connaissances théoriques et pratiques des conférenciers. Communicativeness des formateurs. Pendant le cours, vous pouvez poser des questions et obtenir des réponses satisfaisantes.
Kamil Kurek - ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
Partie pratique, où nous avons implémenté des algorithmes. Cela a permis une meilleure compréhension du sujet.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
exercices et exemples mis en oeuvre
Paweł Orzechowski - ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
Exemples et problèmes discutés.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
Connaissances substantielles, engagement, une manière passionnée de transférer des connaissances. Exemples pratiques après un cours théorique.
Janusz Chrobot - ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
Exercices pratiques préparés par M. Maciej
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
Le formateur était un professionnel du domaine et de la théorie associée, avec une excellente application.
C'est un cours de 4 jours introduisant l'IA et son application en utilisant le langage de programmation Python. Il y a une option d'avoir un jour supplémentaire pour mener un projet d'IA à la fin de ce cours.
Deep Reinforcement Learning fait référence à la capacité d'un "agent artificiel" à apprendre par essais et erreurs et récompenses et punitions. Un agent artificiel vise à imiter la capacité d'un humain à obtenir et à construire des connaissances par lui-même, directement à partir d'intrants bruts tels que la vision. Pour réaliser l'apprentissage par renforcement, l'apprentissage en profondeur et les réseaux de neurones sont utilisés. L'apprentissage par renforcement est différent de l'apprentissage automatique et ne repose pas sur des approches d'apprentissage supervisé et non supervisé.Cette formation en direct, animée par un instructeur (sur site ou à distance), est destinée aux développeurs et aux scientifiques des données qui souhaitent apprendre les bases de Deep Reinforcement Learning au fur et à mesure de la création d'un agent Deep Learning.Au terme de cette formation, les participants seront capables de :
Comprendre les concepts clés derrière Deep Reinforcement Learning et être capable de le distinguer de Machine Learning. Appliquez des algorithmes avancés Reinforcement Learning pour résoudre des problèmes du monde réel. Créez un agent Deep Learning.
Format du cours
Conférence interactive et discussion. Beaucoup d'exercices et de pratique. Mise en œuvre pratique dans un environnement de laboratoire réel.
Options de personnalisation du cours
Pour demander une formation personnalisée pour ce cours, veuillez nous contacter pour organiser.
Ce cours a été créé pour les gestionnaires, les architectes de solutions, les agents d'innovation, les CTO, les architectes de logiciels et tous ceux qui sont intéressés par un aperçu de l'intelligence artificielle appliquée et la prévision la plus proche pour son développement.
Ce cours de formation est destiné aux personnes souhaitant appliquer le Machine Learning à des applications pratiques. Public Ce cours est destiné aux scientifiques et aux statisticiens qui connaissent bien les statistiques et savent programmer R (ou Python ou une autre langue choisie). Ce cours met l'accent sur les aspects pratiques de la préparation, de l'exécution, de l'analyse et de la visualisation de modèles / données. Le but est de donner des applications pratiques à Machine Learning aux participants souhaitant appliquer les méthodes au travail. Des exemples sectoriels sont utilisés pour rendre la formation pertinente pour le public cible.
Le réseau de neurones artificiels est un modèle de données informatique utilisé dans le développement de systèmes d' Artificial Intelligence (AI) capables d'effectuer des tâches "intelligentes". Neural Networks sont couramment utilisés dans les applications Machine Learning (ML), qui sont elles-mêmes une implémentation de l'IA. Deep Learning est un sous-ensemble de ML.
Le réseau de neurones artificiels est un modèle de données informatique utilisé dans le développement de systèmes d' Artificial Intelligence (AI) capables d'effectuer des tâches "intelligentes". Neural Networks sont couramment utilisés dans les applications Machine Learning (ML), qui sont elles-mêmes une implémentation de l'IA. Deep Learning est un sous-ensemble de ML.
Ce cours couvre l'IA (emphasizing Machine Learning et Deep Learning) dans Automotive Industrie. Il aide à déterminer quelle technologie peut (potencialement) être utilisée dans plusieurs situations dans une voiture: de la simple automation, de la reconnaissance d'image à la prise de décision autonome.
Ce cours vous donnera des connaissances sur les réseaux de neurones et plus généralement sur les algorithmes d’apprentissage automatique, d’apprentissage approfondi (algorithmes et applications). Cette formation met davantage l'accent sur les principes fondamentaux, mais vous aidera à choisir la technologie TensorFlow : TensorFlow , Caffe , Teano, DeepDrive, Keras , etc. Les exemples sont réalisés dans TensorFlow .
Ce cours en direct, animé par un instructeur, constitue une introduction au domaine de la reconnaissance des formes et de l'apprentissage automatique. Il aborde des applications pratiques dans les domaines de la statistique, de l'informatique, du traitement du signal, de la vision par ordinateur, de l'exploration de données et de la bioinformatique. Le cours est interactif et comprend de nombreux exercices pratiques, des retours d’instructeurs et des tests des connaissances et des compétences acquises.
Type : Formation théorique avec applications décidées en amont avec les élèves sur Lasagne ou Keras selon le groupe pédagogique
Méthode pédagogique : présentation, échanges et études de cas
L’intelligence artificielle, après avoir bouleversé de nombreux domaines scientifiques, a commencé à révolutionner un grand nombre de secteurs économiques (industrie, médecine, communication, etc.). Néanmoins, sa présentation dans les grands media relève souvent du fantasme, très éloignée de ce que sont réellement les domaines du Machine Learning ou du Deep Learning. L’objet de cette formation est d’apporter à des ingénieurs ayant déjà une maîtrise des outils informatiques (dont une base de programmation logicielle) une introduction au Deep Learning ainsi qu’à ses différents domaines de spécialisation et donc aux principales architectures de réseau existant aujourd’hui. Si les bases mathématiques sont rappelées pendant le cours, un niveau de mathématique de type BAC+2 est recommandé pour plus de confort. Il est dans l’absolu possible de faire l’impasse sur l’axe mathématique pour ne conserver qu’une vision « système », mais cette approche limitera énormément votre compréhension du sujet.
L'unité de traitement Tensor (TPU) est l'architecture que Google a utilisée en interne depuis plusieurs années, et est maintenant en train de devenir disponible pour une utilisation par le grand public Il inclut plusieurs optimisations spécifiquement destinées à être utilisées dans les réseaux neuronaux, y compris la multiplication simplifiée de matrices, et des entiers à 8 bits au lieu de 16 bits afin de renvoyer des niveaux de précision appropriés Dans cette formation en direct, les participants apprendront à tirer parti des innovations des processeurs TPU pour optimiser les performances de leurs propres applications IA À la fin de la formation, les participants seront en mesure de: Former différents types de réseaux de neurones sur de grandes quantités de données Utilisez des TPU pour accélérer le processus d'inférence jusqu'à deux ordres de grandeur Utiliser des TPU pour traiter des applications intensives telles que la recherche d'images, la vision nuageuse et les photos Public Développeurs Des chercheurs Ingénieurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
Microsoft Cognitive Toolkit 2x (anciennement CNTK) est une boîte à outils opensource et commerciale qui forme des algorithmes d'apprentissage en profondeur pour apprendre comme le cerveau humain Selon Microsoft, CNTK peut être 510x plus rapide que TensorFlow sur les réseaux récurrents, et 2 à 3 fois plus rapide que TensorFlow pour les tâches imagerelated Dans cette formation en ligne, les participants apprendront à utiliser Microsoft Cognitive Toolkit pour créer, former et évaluer des algorithmes d'apprentissage en profondeur à utiliser dans des applications IA commerciales impliquant de multiples types de données tels que données, paroles, textes et images À la fin de cette formation, les participants seront en mesure de: Accéder à CNTK en tant que bibliothèque à partir d'un programme Python, C # ou C ++ Utilisez CNTK en tant qu'outil autonome d'apprentissage automatique grâce à son propre langage de description de modèle (BrainScript) Utiliser la fonctionnalité d'évaluation du modèle CNTK à partir d'un programme Java Combiner les DNN feedforward, les réseaux convolutifs (CNN) et les réseaux récurrents (RNN / LSTM) Capacité de calcul d'échelle sur les processeurs, les GPU et plusieurs machines Accédez à des jeux de données volumineux en utilisant les langages de programmation et les algorithmes existants Public Développeurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson Remarque Si vous souhaitez personnaliser une partie de cette formation, y compris le langage de programmation de votre choix, veuillez nous contacter pour organiser .
PaddlePaddle (PArallel Distributed Deep LEarning) est une plateforme d'apprentissage en profondeur évolutive développée par Baidu Dans cette formation en ligne, les participants apprendront comment utiliser PaddlePaddle pour permettre un apprentissage approfondi dans leurs applications de produits et de services À la fin de cette formation, les participants seront en mesure de: Configurer et configurer PaddlePaddle Configurer un réseau neuronal convolutif (CNN) pour la reconnaissance d'image et la détection d'objets Mettre en place un réseau neuronal récurrent (RNN) pour l'analyse des sentiments Mettre en place un apprentissage en profondeur sur les systèmes de recommandation pour aider les utilisateurs à trouver des réponses Prédisez les taux de clics (CTR), classifiez les ensembles d'images à grande échelle, effectuez la reconnaissance optique des caractères (OCR), effectuez des recherches de classement, détectez les virus informatiques et implémentez un système de recommandation Public Développeurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
Snorkel est un système permettant de créer, modéliser et gérer rapidement des données d'entraînement Il se concentre sur l'accélération du développement d'applications d'extraction de données structurées ou «sombres» pour des domaines dans lesquels de grands ensembles d'apprentissage étiquetés ne sont pas disponibles ou faciles à obtenir Dans cette formation en ligne, les participants apprendront des techniques pour extraire de la valeur à partir de données non structurées telles que du texte, des tableaux, des figures et des images grâce à la modélisation des données d'entraînement avec Snorkel À la fin de cette formation, les participants seront en mesure de: Créer par programmation des ensembles d'entraînement pour permettre l'étiquetage d'ensembles d'entraînement massifs Former des modèles finaux de haute qualité en commençant par modéliser des ensembles d'entraînement bruyants Utiliser Snorkel pour implémenter de faibles techniques de supervision et appliquer la programmation de données à des systèmes d'apprentissage machine faiblement supervisés Public Développeurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
Encog est un framework d'apprentissage machine opensource pour Java etNet Dans cette formation en direct, les participants apprendront des techniques avancées d'apprentissage automatique pour construire des modèles prédictifs précis de réseaux neuronaux À la fin de cette formation, les participants seront en mesure de: Mettre en œuvre différentes techniques d'optimisation des réseaux neuronaux pour résoudre les problèmes de sous-équipement et de surapprentissage Comprendre et choisir parmi un certain nombre d'architectures de réseaux neuronaux Mettre en place des réseaux de feed-back et de feedback supervisés Public Développeurs Analystes Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
Encog est un framework d'apprentissage machine opensource pour Java etNet Dans cette formation en ligne, les participants apprendront comment créer différents composants de réseau neuronal en utilisant ENCOG Les études de cas de Realworld seront discutées et des solutions basées sur le langage machine à ces problèmes seront explorées À la fin de cette formation, les participants seront en mesure de: Préparer les données pour les réseaux de neurones en utilisant le processus de normalisation Mettre en œuvre des réseaux d'anticipation et des méthodologies de formation à la propagation Implémenter des tâches de classification et de régression Modéliser et former des réseaux de neurones à l'aide de l'atelier basé sur l'interface graphique d'Encog Intégrez le support de réseau neuronal dans les applications realworld Public Développeurs Analystes Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
In this instructor-led, live training, participants will learn how to use Matlab to design, build, and visualize a convolutional neural network for image recognition.
By the end of this training, participants will be able to:
Build a deep learning model
Automate data labeling
Work with models from Caffe and TensorFlow-Keras
Train data using multiple GPUs, the cloud, or clusters
Audience
Developers
Engineers
Domain experts
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
Ce cours commence par vous donner des connaissances conceptuelles sur les réseaux de neurones et plus généralement sur les algorithmes d'apprentissage automatique, d'apprentissage approfondi (algorithmes et applications). La partie 1 (40%) de cette formation met davantage l'accent sur les principes fondamentaux, mais vous aidera à choisir la bonne technologie: TensorFlow , Caffe , Theano, DeepDrive, Keras , etc. La partie 2 (20%) de cette formation présente Theano, une bibliothèque python qui facilite l’écriture de modèles d’apprentissage approfondi. La partie 3 (40%) de la formation serait largement basée sur Tensorflow - API de deuxième génération de la bibliothèque de logiciels open source de Go ogle pour Deep Learning . Les exemples et handson seraient tous fabriqués dans TensorFlow . Public Ce cours est destiné aux ingénieurs souhaitant utiliser TensorFlow pour leurs projets d' Deep Learning . Une fois ce cours terminé, les délégués:
avoir une bonne compréhension des réseaux de neurones profonds (DNN), CNN et RNN
comprendre la structure et les mécanismes de déploiement de TensorFlow
être capable d'effectuer des tâches d'installation / environnement de production / architecture et configuration
être capable d'évaluer la qualité du code, effectuer le débogage, la surveillance
être capable de mettre en œuvre une production avancée comme des modèles de formation, la création de graphiques et la journalisation
Cette session de formation en classe contiendra des présentations, des exemples informatiques et des exercices d’études de cas à entreprendre avec les bibliothèques de réseaux neuronales et profondes pertinentes.
This is a 4 day course introducing AI and it's application. There is an option to have an additional day to undertake an AI project on completion of this course.
La mécatronique (ou ingénierie mécatronique) est une combinaison de mécanique, d'électronique et d'informatique. Cette formation en direct, animée par un instructeur (sur site ou à distance), est destinée aux ingénieurs qui souhaitent en savoir plus sur l'applicabilité de l'intelligence artificielle aux systèmes mécatroniques. À la fin de cette formation, les participants seront en mesure de:
Obtenez un aperçu de l'intelligence artificielle, de l'apprentissage automatique et de l'intelligence informatique.
Comprendre les concepts de réseaux de neurones et de différentes méthodes d'apprentissage.
Choisissez efficacement des approches d'intelligence artificielle pour des problèmes concrets.
Implémenter des applications d'intelligence artificielle en ingénierie mécatronique.
Format du cours
Conférence interactive et discussion.
Beaucoup d'exercices et de pratique.
Mise en œuvre pratique dans un environnement de laboratoire réel.
Options de personnalisation du cours
Pour demander une formation personnalisée pour ce cours, veuillez nous contacter pour organiser cela.
Un système de recommandation est un processus de filtration d’informations qui prédit les préférences de l’utilisateur. Python peut être utilisé pour programmer l'apprentissage profond, l'apprentissage automatique et les systèmes de recommandation de réseau nerveux pour aider les utilisateurs à découvrir de nouveaux produits et contenus.
Cette formation guidée par des instructeurs, en direct (online ou sur site) est destinée à des scientifiques de données qui souhaitent utiliser Python pour construire des systèmes de recommandation.
À la fin de cette formation, les participants seront en mesure de :
Créer des systèmes recommandés à l’échelle.
Appliquez un filtre collaboratif pour construire des systèmes de recommandation.
Utilisez Apache Spark pour compter les systèmes de recommandation sur les clusters.
Créez un cadre pour tester les algorithmes de recommandation avec Python.
Le format du cours
Lecture et discussion interactives.
Beaucoup d’exercices et de pratiques.
La mise en œuvre dans un environnement de laboratoire en direct.
Options de personnalisation de cours
Pour demander une formation personnalisée pour ce cours, veuillez nous contacter pour organiser.
This instructor-led, live training in France (online or onsite) is aimed at researchers and developers who wish to use Chainer to build and train neural networks in Python while making the code easy to debug.
By the end of this training, participants will be able to:
Set up the necessary development environment to start developing neural network models.
Define and implement neural network models using a comprehensible source code.
Execute examples and modify existing algorithms to optimize deep learning training models while leveraging GPUs for high performance.
Dans cette formation en direct animée par un instructeur, nous passons en revue les principes des réseaux de neurones et utilisons OpenNN pour implémenter un exemple d'application.Format du cours
Conférence et discussion couplées à des exercices pratiques.
Weekend Réseaux Neurones cours, Soir Réseaux Neurones formation, Réseaux Neurones stage d’entraînement, Réseaux Neurones formateur à distance, Réseaux Neurones formateur en ligne, Réseaux Neurones formateur Online, Réseaux Neurones cours en ligne, Réseaux Neurones cours à distance, Réseaux Neurones professeur à distance, Réseaux Neurones visioconférence, Réseaux Neurones stage d’entraînement intensif, Réseaux Neurones formation accélérée, Réseaux Neurones formation intensive, Formation inter Réseaux Neurones, Formation intra Réseaux Neurones, Formation intra Enteprise Réseaux Neurones, Formation inter Entreprise Réseaux Neurones, Weekend Réseaux Neurones formation, Soir Réseaux Neurones cours, Réseaux Neurones coaching, Réseaux Neurones entraînement, Réseaux Neurones préparation, Réseaux Neurones instructeur, Réseaux Neurones professeur, Réseaux Neurones formateur, Réseaux Neurones stage de formation, Réseaux Neurones cours, Réseaux Neurones sur place, Réseaux Neurones formations privées, Réseaux Neurones formation privée, Réseaux Neurones cours particulier, Réseaux Neurones cours particuliersWeekend Neural Networks cours, Soir Neural Networks formation, Neural Networks stage d’entraînement, Neural Networks formateur à distance, Neural Networks formateur en ligne, Neural Networks formateur Online, Neural Networks cours en ligne, Neural Networks cours à distance, Neural Networks professeur à distance, Neural Networks visioconférence, Neural Networks stage d’entraînement intensif, Neural Networks formation accélérée, Neural Networks formation intensive, Formation inter Neural Networks, Formation intra Neural Networks, Formation intra Enteprise Neural Networks, Formation inter Entreprise Neural Networks, Weekend Neural Networks formation, Soir Neural Networks cours, Neural Networks coaching, Neural Networks entraînement, Neural Networks préparation, Neural Networks instructeur, Neural Networks professeur, Neural Networks formateur, Neural Networks stage de formation, Neural Networks cours, Neural Networks sur place, Neural Networks formations privées, Neural Networks formation privée, Neural Networks cours particulier, Neural Networks cours particuliers
Réduction spéciale
No course discounts for now.
Newsletter offres spéciales
Nous respectons le caractère privé de votre adresse mail. Nous ne divulguerons ni ne vendrons votre adresse email à quiconque Vous pouvez toujours modifier vos préférences ou vous désinscrire complètement.
Nos clients
is growing fast!
Nous recherchons des formateurs alliant compétences techniques et savoir-être en France!
En tant que formateur NobleProg, vous serez responsable de :
délivrer des formations dans le monde entier
préparer les supports de cours
apporter des améliorations au fil des formations
fournir des prestations de conseil
Pour le moment, nous nous concentrons sur les domaines suivants :
Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
SOA, BPM, BPMN
Hibernate/Spring, Scala, Spark, jBPM, Drools
R, Python
Mobile Development (iOS, Android)
LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
Si vous avez de la patience et de l'empathie pour les personnes que vous formez, vous êtes fait pour rejoindre NobleProg.
Pour postuler, veuillez s'il vous plaît créer votre profil formateur en cliquant sur le lien ci-dessous :