Formation Natural Language Processing - AI/Robotics

Code formation

NPL_LBG

Durée

21 heures (généralement 3 jours pauses comprises)

Pré requis

Knowledge and awareness of NLP principals and an appreciation of AI application in business

Aperçu

Cette séance de formation en classe explorera les techniques de la PNL en conjonction avec l'application de l'IA et de la robotique dans les affaires Les délégués entreprendront des exercices sur ordinateur et des exercices de résolution d'études de cas en utilisant Python .

Machine Translated

Plan du cours

Detailed training outline

  1. Introduction to NLP
    • Understanding NLP
    • NLP Frameworks
    • Commercial applications of NLP
    • Scraping data from the web
    • Working with various APIs to retrieve text data
    • Working and storing text corpora saving content and relevant metadata
    • Advantages of using Python and NLTK crash course
  2. Practical Understanding of a Corpus and Dataset
    • Why do we need a corpus?
    • Corpus Analysis
    • Types of data attributes
    • Different file formats for corpora
    • Preparing a dataset for NLP applications
  3. Understanding the Structure of a Sentences
    • Components of NLP
    • Natural language understanding
    • Morphological analysis - stem, word, token, speech tags
    • Syntactic analysis
    • Semantic analysis
    • Handling ambigiuty
  4. Text data preprocessing
    • Corpus- raw text
      • Sentence tokenization
      • Stemming for raw text
      • Lemmization of raw text
      • Stop word removal
    • Corpus-raw sentences
      • Word tokenization
      • Word lemmatization
    • Working with Term-Document/Document-Term matrices
    • Text tokenization into n-grams and sentences
    • Practical and customized preprocessing
  5. Analyzing Text data
    • Basic feature of NLP
      • Parsers and parsing
      • POS tagging and taggers
      • Name entity recognition
      • N-grams
      • Bag of words
    • Statistical features of NLP
      • Concepts of Linear algebra for NLP
      • Probabilistic theory for NLP
      • TF-IDF
      • Vectorization
      • Encoders and Decoders
      • Normalization
      • Probabilistic Models
    • Advanced feature engineering and NLP
      • Basics of word2vec
      • Components of word2vec model
      • Logic of the word2vec model
      • Extension of the word2vec concept
      • Application of word2vec model
    • Case study: Application of bag of words: automatic text summarization using simplified and true Luhn's algorithms
  6. Document Clustering, Classification and Topic Modeling
    • Document clustering and pattern mining (hierarchical clustering, k-means, clustering, etc.)
    • Comparing and classifying documents using TFIDF, Jaccard and cosine distance measures
    • Document classifcication using Naïve Bayes and Maximum Entropy
  7. Identifying Important Text Elements
    • Reducing dimensionality: Principal Component Analysis, Singular Value Decomposition non-negative matrix factorization
    • Topic modeling and information retrieval using Latent Semantic Analysis
  8. Entity Extraction, Sentiment Analysis and Advanced Topic Modeling
    • Positive vs. negative: degree of sentiment
    • Item Response Theory
    • Part of speech tagging and its application: finding people, places and organizations mentioned in text
    • Advanced topic modeling: Latent Dirichlet Allocation
  9. Case studies
    • Mining unstructured user reviews
    • Sentiment classification and visualization of Product Review Data
    • Mining search logs for usage patterns
    • Text classification
    • Topic modelling

Nos Clients témoignent

★★★★★
★★★★★

Catégories Similaires

Cours Similaires

Réduction spéciale

Newsletter offres spéciales

Nous respectons le caractère privé de votre adresse mail. Nous ne divulguerons ni ne vendrons votre adresse email à quiconque
Vous pouvez toujours modifier vos préférences ou vous désinscrire complètement.

Nos clients

is growing fast!

We are looking for a good mixture of IT and soft skills in France!

As a NobleProg Trainer you will be responsible for:

  • delivering training and consultancy Worldwide
  • preparing training materials
  • creating new courses outlines
  • delivering consultancy
  • quality management

At the moment we are focusing on the following areas:

  • Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
  • SOA, BPM, BPMN
  • Hibernate/Spring, Scala, Spark, jBPM, Drools
  • R, Python
  • Mobile Development (iOS, Android)
  • LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
  • You need to have patience and ability to explain to non-technical people

To apply, please create your trainer-profile by going to the link below:

Apply now!

This site in other countries/regions