Les formations Intelligence Artificielle | Les formations Artificial Intelligence (AI)

Les formations Intelligence Artificielle

Des formations locales en intelligence artificielle (IA) en direct, animées par un instructeur, expliquent par des exercices pratiques comment mettre en œuvre des solutions d'IA pour résoudre des problèmes concrets. La formation en intelligence artificielle est disponible en tant que "formation sur site en direct" ou "formation en direct à distance". La formation en direct sur site peut être effectuée localement chez le client à France ou dans des centres de formation d'entreprise NobleProg dans France . La formation en direct à distance est réalisée au moyen d'un poste de travail distant et interactif. NobleProg - Votre prestataire de formation local.

Machine Translated

Nos Clients témoignent

★★★★★
★★★★★

Plans de cours Intelligence Artificielle

Nom du Cours
Durée
Aperçu
Nom du Cours
Durée
Aperçu
7 hours
Aperçu
This course has been created for managers, solutions architects, innovation officers, CTOs, software architects and anyone who is interested in an overview of applied artificial intelligence and the nearest forecast for its development.
21 hours
Aperçu
Ce cours utilise une approche pratique pour enseigner OptaPlanner . Il fournit aux participants les outils nécessaires pour exécuter les fonctions de base de cet outil.
28 hours
Aperçu
This four day course is aimed at teaching how genetic algorithms work; it also covers how to select model parameters of a genetic algorithm; there are many applications for genetic algorithms in this course and optimization problems are tackled with the genetic algorithms.
7 hours
Aperçu
This is a classroom based training session in a presentation and Q&A format
14 hours
Aperçu
This instructor-led, live training in France (online or onsite) is aimed at technical persons who wish to set up or extend an RPA system with more intelligent capabilities.

By the end of this training, participants will be able to:

- Install and configure UiPath IPA.
- Enable robots to manage other robots.
- Apply computer vision to locate screen objects with accuracy.
- Enable robots that can detect language patterns and carry out sentiment analysis on unstructured content.
14 hours
Aperçu
This instructor-led, live training in France (online or onsite) is aimed at software testers who wish to have an AI driven software testing environment.

By the end of this training, participants will be able to:

- Automate unit test generation and parameterization with AI.
- Apply machine learning learning in a real world use-case.
- Automate the generation and maintenance of API tests with AI.
- Use machine learning methods to self-heal the execution of Selenium tests.
35 hours
Aperçu
This is a 5 day introduction to Data Science and Artificial Intelligence (AI).

The course is delivered with examples and exercises using Python
7 hours
Aperçu
This instructor-led, live training in France (online or onsite) is aimed at marketers who wish to use AI to improve improve digital marketing strategies through valuable customer insights.

By the end of this training, participants will be able to:

- Leverage AI software to improve the way brands connect to users.
- Use chatbots to optimize the user-experience.
- Increase productivity and revenue through the automation of tasks.
14 hours
Aperçu
This instructor-led, live training in France (online or onsite) is aimed at data scientists who wish to use IBM Cloud Pak to prepare data for use in AI solutions.

By the end of this training, participants will be able to:

- Install and configure Cloud Pak for Data.
- Unify the collection, organization and analysis of data.
- Integrate Cloud Pak for Data with a variety of services to solve common business problems.
- Implement workflows for collaborating with team members on the development of an AI solution.
21 hours
Aperçu
This instructor-led, live training in France (online or onsite) is aimed at engineers who wish to program and create robots through basic AI methods.

By the end of this training, participants will be able to:

- Implement filters (Kalman and particle) to enable the robot to locate moving objects in its environment.
- Implement search algorithms and motion planning.
- Implement PID controls to regulate a robot's movement within an environment.
- Implement SLAM algorithms to enable a robot to map out an unknown environment.
7 hours
Aperçu
This instructor-led, live training in France (online or onsite) is aimed at managers and business leaders who wish to learn about the fundamentals of artificial intelligence and manage AI projects for their organization.

By the end of this training, participants will be able to understand AI at a technical level and strategize using their organization’s data and resources to successfully manage AI projects.
80 hours
Aperçu
In this instructor-led, live training in France (online or onsite), participants will learn the different technologies, frameworks and techniques for programming different types of robots to be used in the field of nuclear technology and environmental systems.

The 4-week course is held 5 days a week. Each day is 4-hours long and consists of lectures, discussions, and hands-on robot development in a live lab environment. Participants will complete various real-world projects applicable to their work in order to practice their acquired knowledge.

The target hardware for this course will be simulated in 3D through simulation software. The code will then be loaded onto physical hardware (Arduino or other) for final deployment testing. The ROS (Robot Operating System) open-source framework, C++ and Python will be used for programming the robots.

By the end of this training, participants will be able to:

- Understand the key concepts used in robotic technologies.
- Understand and manage the interaction between software and hardware in a robotic system.
- Understand and implement the software components that underpin robotics.
- Build and operate a simulated mechanical robot that can see, sense, process, navigate, and interact with humans through voice.
- Understand the necessary elements of artificial intelligence (machine learning, deep learning, etc.) applicable to building a smart robot.
- Implement filters (Kalman and Particle) to enable the robot to locate moving objects in its environment.
- Implement search algorithms and motion planning.
- Implement PID controls to regulate a robot's movement within an environment.
- Implement SLAM algorithms to enable a robot to map out an unknown environment.
- Test and troubleshoot a robot in realistic scenarios.
120 hours
Aperçu
In this instructor-led, live training in France (online or onsite), participants will learn the different technologies, frameworks and techniques for programming different types of robots to be used in the field of nuclear technology and environmental systems.

The 6-week course is held 5 days a week. Each day is 4-hours long and consists of lectures, discussions, and hands-on robot development in a live lab environment. Participants will complete various real-world projects applicable to their work in order to practice their acquired knowledge.

The target hardware for this course will be simulated in 3D through simulation software. The ROS (Robot Operating System) open-source framework, C++ and Python will be used for programming the robots.

By the end of this training, participants will be able to:

- Understand the key concepts used in robotic technologies.
- Understand and manage the interaction between software and hardware in a robotic system.
- Understand and implement the software components that underpin robotics.
- Build and operate a simulated mechanical robot that can see, sense, process, navigate, and interact with humans through voice.
- Understand the necessary elements of artificial intelligence (machine learning, deep learning, etc.) applicable to building a smart robot.
- Implement filters (Kalman and Particle) to enable the robot to locate moving objects in its environment.
- Implement search algorithms and motion planning.
- Implement PID controls to regulate a robot's movement within an environment.
- Implement SLAM algorithms to enable a robot to map out an unknown environment.
- Extend a robot's ability to perform complex tasks through Deep Learning.
- Test and troubleshoot a robot in realistic scenarios.
7 hours
Aperçu
La formation s'adresse aux personnes qui souhaitent apprendre les bases des réseaux de neurones et de leurs applications.
14 hours
Aperçu
Ce cours est une introduction à l'application de réseaux de neurones à des problèmes du monde réel à l'aide du logiciel R-project.
14 hours
Aperçu
This training course is for people that would like to apply Machine Learning in practical applications.

Audience

This course is for data scientists and statisticians that have some familiarity with statistics and know how to program R (or Python or other chosen language). The emphasis of this course is on the practical aspects of data/model preparation, execution, post hoc analysis and visualization.

The purpose is to give practical applications to Machine Learning to participants interested in applying the methods at work.

Sector specific examples are used to make the training relevant to the audience.
21 hours
Aperçu
Artificial Neural Network is a computational data model used in the development of Artificial Intelligence (AI) systems capable of performing "intelligent" tasks. Neural Networks are commonly used in Machine Learning (ML) applications, which are themselves one implementation of AI. Deep Learning is a subset of ML.
21 hours
Aperçu
Le réseau de neurones artificiels est un modèle de données informatique utilisé dans le développement de systèmes d' Artificial Intelligence (AI) capables d'effectuer des tâches "intelligentes". Neural Networks sont couramment utilisés dans les applications Machine Learning (ML), qui sont elles-mêmes une implémentation de l'IA. Deep Learning est un sous-ensemble de ML.
35 hours
Aperçu
This course is created for people who have no previous experience in probability and statistics.
14 hours
Aperçu
Ce cours couvre l'IA (mettant l'accent sur l' Machine Learning et l' Deep Learning ) dans l'industrie Automotive . Cela aide à déterminer quelle technologie peut (potentiellement) être utilisée dans plusieurs situations de la voiture: de l'automatisation simple à la prise de décision autonome en passant par la reconnaissance d'images.
28 hours
Aperçu
Ce cours vous donnera des connaissances sur les réseaux de neurones et plus généralement sur les algorithmes d’apprentissage automatique, d’apprentissage approfondi (algorithmes et applications).

Cette formation met davantage l'accent sur les principes fondamentaux, mais vous aidera à choisir la technologie TensorFlow : TensorFlow , Caffe , Teano, DeepDrive, Keras , etc. Les exemples sont réalisés dans TensorFlow .
21 hours
Aperçu
This instructor-led, live course provides an introduction into the field of pattern recognition and machine learning. It touches on practical applications in statistics, computer science, signal processing, computer vision, data mining, and bioinformatics.

The course is interactive and includes plenty of hands-on exercises, instructor feedback, and testing of knowledge and skills acquired.
21 hours
Aperçu
Type : Formation théorique avec applications décidées en amont avec les élèves sur Lasagne ou Keras selon le groupe pédagogique

Méthode pédagogique : présentation, échanges et études de cas

L’intelligence artificielle, après avoir bouleversé de nombreux domaines scientifiques, a commencé à révolutionner un grand nombre de secteurs économiques (industrie, médecine, communication, etc.). Néanmoins, sa présentation dans les grands media relève souvent du fantasme, très éloignée de ce que sont réellement les domaines du Machine Learning ou du Deep Learning. L’objet de cette formation est d’apporter à des ingénieurs ayant déjà une maîtrise des outils informatiques (dont une base de programmation logicielle) une introduction au Deep Learning ainsi qu’à ses différents domaines de spécialisation et donc aux principales architectures de réseau existant aujourd’hui. Si les bases mathématiques sont rappelées pendant le cours, un niveau de mathématique de type BAC+2 est recommandé pour plus de confort. Il est dans l’absolu possible de faire l’impasse sur l’axe mathématique pour ne conserver qu’une vision « système », mais cette approche limitera énormément votre compréhension du sujet.
7 hours
Aperçu
In this instructor-led, live training in France, participants will learn how to take advantage of the innovations in TPU processors to maximize the performance of their own AI applications.

By the end of the training, participants will be able to:

- Train various types of neural networks on large amounts of data.
- Use TPUs to speed up the inference process by up to two orders of magnitude.
- Utilize TPUs to process intensive applications such as image search, cloud vision and photos.
21 hours
Aperçu
Microsoft Cognitive Toolkit 2.x (previously CNTK) is an open-source, commercial-grade toolkit that trains deep learning algorithms to learn like the human brain. According to Microsoft, CNTK can be 5-10x faster than TensorFlow on recurrent networks, and 2 to 3 times faster than TensorFlow for image-related tasks.

In this instructor-led, live training, participants will learn how to use Microsoft Cognitive Toolkit to create, train and evaluate deep learning algorithms for use in commercial-grade AI applications involving multiple types of data such as data, speech, text, and images.

By the end of this training, participants will be able to:

- Access CNTK as a library from within a Python, C#, or C++ program
- Use CNTK as a standalone machine learning tool through its own model description language (BrainScript)
- Use the CNTK model evaluation functionality from a Java program
- Combine feed-forward DNNs, convolutional nets (CNNs), and recurrent networks (RNNs/LSTMs)
- Scale computation capacity on CPUs, GPUs and multiple machines
- Access massive datasets using existing programming languages and algorithms

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice

Note

- If you wish to customize any part of this training, including the programming language of choice, please contact us to arrange.
21 hours
Aperçu
PaddlePaddle (PArallel Distributed Deep LEarning) is a scalable deep learning platform developed by Baidu.

In this instructor-led, live training, participants will learn how to use PaddlePaddle to enable deep learning in their product and service applications.

By the end of this training, participants will be able to:

- Set up and configure PaddlePaddle
- Set up a Convolutional Neural Network (CNN) for image recognition and object detection
- Set up a Recurrent Neural Network (RNN) for sentiment analysis
- Set up deep learning on recommendation systems to help users find answers
- Predict click-through rates (CTR), classify large-scale image sets, perform optical character recognition(OCR), rank searches, detect computer viruses, and implement a recommendation system.

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
7 hours
Aperçu
Snorkel is a system for rapidly creating, modeling, and managing training data. It focuses on accelerating the development of structured or "dark" data extraction applications for domains in which large labeled training sets are not available or easy to obtain.

In this instructor-led, live training, participants will learn techniques for extracting value from unstructured data such as text, tables, figures, and images through modeling of training data with Snorkel.

By the end of this training, participants will be able to:

- Programmatically create training sets to enable the labeling of massive training sets
- Train high-quality end models by first modeling noisy training sets
- Use Snorkel to implement weak supervision techniques and apply data programming to weakly-supervised machine learning systems

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 hours
Aperçu
Encog is an open-source machine learning framework for Java and .Net.

In this instructor-led, live training, participants will learn advanced machine learning techniques for building accurate neural network predictive models.

By the end of this training, participants will be able to:

- Implement different neural networks optimization techniques to resolve underfitting and overfitting
- Understand and choose from a number of neural network architectures
- Implement supervised feed forward and feedback networks

Audience

- Developers
- Analysts
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 hours
Aperçu
Encog is an open-source machine learning framework for Java and .Net.

In this instructor-led, live training, participants will learn how to create various neural network components using ENCOG. Real-world case studies will be discussed and machine language based solutions to these problems will be explored.

By the end of this training, participants will be able to:

- Prepare data for neural networks using the normalization process
- Implement feed forward networks and propagation training methodologies
- Implement classification and regression tasks
- Model and train neural networks using Encog's GUI based workbench
- Integrate neural network support into real-world applications

Audience

- Developers
- Analysts
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 hours
Aperçu
In this instructor-led, live training, participants will learn how to use Matlab to design, build, and visualize a convolutional neural network for image recognition.

By the end of this training, participants will be able to:

- Build a deep learning model
- Automate data labeling
- Work with models from Caffe and TensorFlow-Keras
- Train data using multiple GPUs, the cloud, or clusters

Audience

- Developers
- Engineers
- Domain experts

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice

Prochains cours AI (Artificial Intelligence)

Weekend Artificial Intelligence cours, Soir AI formation, AI stage d’entraînement, AI (Artificial Intelligence) formateur à distance, AI formateur en ligne, AI formateur Online, AI cours en ligne, AI cours à distance, Intelligence Artificielle professeur à distance, AI visioconférence, AI (Artificial Intelligence) stage d’entraînement intensif, AI (Artificial Intelligence) formation accélérée, Intelligence Artificielle formation intensive, Formation inter Intelligence Artificielle, Formation intra Artificial Intelligence, Formation intra Enteprise Intelligence Artificielle, Formation inter Entreprise Artificial Intelligence, Weekend Artificial Intelligence formation, Soir Intelligence Artificielle cours, Artificial Intelligence coaching, Artificial Intelligence entraînement, Artificial Intelligence préparation, AI instructeur, Intelligence Artificielle professeur, Artificial Intelligence formateur, AI (Artificial Intelligence) stage de formation, Intelligence Artificielle cours, AI (Artificial Intelligence) sur place, Artificial Intelligence formations privées, AI (Artificial Intelligence) formation privée, Intelligence Artificielle cours particulier, AI (Artificial Intelligence) cours particuliersWeekend Artificial Intelligence cours, Soir AI formation, AI stage d’entraînement, AI (Artificial Intelligence) formateur à distance, AI formateur en ligne, AI formateur Online, AI cours en ligne, AI cours à distance, Artificial Intelligence (AI) professeur à distance, AI visioconférence, AI (Artificial Intelligence) stage d’entraînement intensif, AI (Artificial Intelligence) formation accélérée, Artificial Intelligence (AI) formation intensive, Formation inter Artificial Intelligence (AI), Formation intra Artificial Intelligence, Formation intra Enteprise Artificial Intelligence (AI), Formation inter Entreprise Artificial Intelligence, Weekend Artificial Intelligence formation, Soir Artificial Intelligence (AI) cours, Artificial Intelligence coaching, Artificial Intelligence entraînement, Artificial Intelligence préparation, AI instructeur, Artificial Intelligence (AI) professeur, Artificial Intelligence formateur, AI (Artificial Intelligence) stage de formation, Artificial Intelligence (AI) cours, AI (Artificial Intelligence) sur place, Artificial Intelligence formations privées, AI (Artificial Intelligence) formation privée, Artificial Intelligence (AI) cours particulier, AI (Artificial Intelligence) cours particuliers

Réduction spéciale

Newsletter offres spéciales

Nous respectons le caractère privé de votre adresse mail. Nous ne divulguerons ni ne vendrons votre adresse email à quiconque
Vous pouvez toujours modifier vos préférences ou vous désinscrire complètement.

Nos clients

is growing fast!

Nous recherchons des formateurs alliant compétences techniques et savoir-être en France!

En tant que formateur NobleProg, vous serez responsable de :

  • délivrer des formations dans le monde entier
  • préparer les supports de cours
  • apporter des améliorations au fil des formations
  • fournir des prestations de conseil

Pour le moment, nous nous concentrons sur les domaines suivants :

  • Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
  • SOA, BPM, BPMN
  • Hibernate/Spring, Scala, Spark, jBPM, Drools
  • R, Python
  • Mobile Development (iOS, Android)
  • LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
  • Si vous avez de la patience et de l'empathie pour les personnes que vous formez, vous êtes fait pour rejoindre NobleProg.

Pour postuler, veuillez s'il vous plaît créer votre profil formateur en cliquant sur le lien ci-dessous :

Postuler ici

This site in other countries/regions