Formation Building Secure and Responsible LLM Applications
LLM application security is the discipline of designing, building, and maintaining safe, trustworthy, and policy-compliant systems using large language models.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level AI developers, architects, and product managers who wish to identify and mitigate risks associated with LLM-powered applications, including prompt injection, data leakage, and unfiltered output, while incorporating security controls like input validation, human-in-the-loop oversight, and output guardrails.
By the end of this training, participants will be able to:
- Understand the core vulnerabilities of LLM-based systems.
- Apply secure design principles to LLM app architecture.
- Use tools such as Guardrails AI and LangChain for validation, filtering, and safety.
- Integrate techniques like sandboxing, red teaming, and human-in-the-loop review into production-grade pipelines.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Plan du cours
Overview of LLM Architecture and Attack Surface
- How LLMs are built, deployed, and accessed via APIs
- Key components in LLM app stacks (e.g., prompts, agents, memory, APIs)
- Where and how security issues arise in real-world use
Prompt Injection and Jailbreak Attacks
- What is prompt injection and why it’s dangerous
- Direct and indirect prompt injection scenarios
- Jailbreaking techniques to bypass safety filters
- Detection and mitigation strategies
Data Leakage and Privacy Risks
- Accidental data exposure through responses
- PII leaks and model memory misuse
- Designing privacy-conscious prompts and retrieval-augmented generation (RAG)
LLM Output Filtering and Guarding
- Using Guardrails AI for content filtering and validation
- Defining output schemas and constraints
- Monitoring and logging unsafe outputs
Human-in-the-Loop and Workflow Approaches
- Where and when to introduce human oversight
- Approval queues, scoring thresholds, fallback handling
- Trust calibration and role of explainability
Secure LLM App Design Patterns
- Least privilege and sandboxing for API calls and agents
- Rate limiting, throttling, and abuse detection
- Robust chaining with LangChain and prompt isolation
Compliance, Logging, and Governance
- Ensuring auditability of LLM outputs
- Maintaining traceability and prompt/version control
- Aligning with internal security policies and regulatory needs
Summary and Next Steps
Pré requis
- An understanding of large language models and prompt-based interfaces
- Experience building LLM applications using Python
- Familiarity with API integrations and cloud-based deployments
Audience
- AI developers
- Application and solution architects
- Technical product managers working with LLM tools
Les formations ouvertes requièrent plus de 3 participants.
Formation Building Secure and Responsible LLM Applications - Booking
Formation Building Secure and Responsible LLM Applications - Enquiry
Building Secure and Responsible LLM Applications - Demande d'informations consulting
Demande d'informations consulting
Cours à venir
Cours Similaires
Advanced LangGraph: Optimization, Debugging, and Monitoring Complex Graphs
35 HeuresLangGraph is a framework for building stateful, multi-actor LLM applications as composable graphs with persistent state and control over execution.
This instructor-led, live training (online or onsite) is aimed at advanced-level AI platform engineers, DevOps for AI, and ML architects who wish to optimize, debug, monitor, and operate production-grade LangGraph systems.
By the end of this training, participants will be able to:
- Design and optimize complex LangGraph topologies for speed, cost, and scalability.
- Engineer reliability with retries, timeouts, idempotency, and checkpoint-based recovery.
- Debug and trace graph executions, inspect state, and systematically reproduce production issues.
- Instrument graphs with logs, metrics, and traces, deploy to production, and monitor SLAs and costs.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Advanced Ollama Model Debugging & Evaluation
35 HeuresAdvanced Ollama Model Debugging & Evaluation is an in-depth course focused on diagnosing, testing, and measuring model behavior when running local or private Ollama deployments.
This instructor-led, live training (online or onsite) is aimed at advanced-level AI engineers, ML Ops professionals, and QA practitioners who wish to ensure reliability, fidelity, and operational readiness of Ollama-based models in production.
By the end of this training, participants will be able to:
- Perform systematic debugging of Ollama-hosted models and reproduce failure modes reliably.
- Design and execute robust evaluation pipelines with quantitative and qualitative metrics.
- Implement observability (logs, traces, metrics) to monitor model health and drift.
- Automate testing, validation, and regression checks integrated into CI/CD pipelines.
Format of the Course
- Interactive lecture and discussion.
- Hands-on labs and debugging exercises using Ollama deployments.
- Case studies, group troubleshooting sessions, and automation workshops.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Construire des flux de travail d'IA privés avec Ollama
14 HeuresCe entraînement en direct (en ligne ou sur place) dispensé par un instructeur à France s'adresse aux professionnels de niveau avancé souhaitant mettre en œuvre des flux de travail basés sur l'intelligence artificielle (IA) sécurisés et efficaces en utilisant Ollama.
À la fin de cet entraînement, les participants seront capables de :
- Déployer et configurer Ollama pour le traitement privé de l'IA.
- Intégrer des modèles d'IA dans des flux de travail entreprenariaux sécurisés.
- Optimiser la performance de l'IA tout en maintenant la confidentialité des données.
- Automatiser les processus commerciaux avec des capacités d'IA sur site.
- Garantir la conformité aux politiques de sécurité et de gouvernance entreprenariales.
Claude AI pour les Développeurs : Création d'Applications Alimentées par l'IA
14 HeuresCette formation en direct avec instructeur à France (en ligne ou sur site) est destinée aux développeurs de logiciels et aux ingénieurs en IA de niveau intermédiaire qui souhaitent intégrer l'IA de Claude dans leurs applications, créer des chatbots alimentés par l'IA et améliorer les fonctionnalités des logiciels grâce à l'automatisation pilotée par l'IA.
A la fin de cette formation, les participants seront capables de :
- Utiliser l'API Claude AI pour intégrer l'IA dans les applications.
- Développer des chatbots et des assistants virtuels pilotés par l'IA.
- Améliorer les applications avec l'automatisation basée sur l'IA et le NLP.
- Optimiser et affiner les modèles de Claude AI pour différents cas d'utilisation.
Claude AI pour l'automatisation des workflows et la productivité
14 HeuresCette formation en direct avec instructeur à France (en ligne ou sur site) s'adresse aux professionnels débutants qui souhaitent intégrer Claude AI dans leurs flux de travail quotidiens pour améliorer l'efficacité et l'automatisation.
A l'issue de cette formation, les participants seront en mesure de :
- Utiliser Claude AI pour automatiser les tâches répétitives et rationaliser les flux de travail.
- Améliorer la productivité personnelle et collective grâce à l'automatisation par l'IA.
- Intégrer Claude AI aux outils et plateformes existants.
- Optimiser la prise de décision et la gestion des tâches basées sur l'IA.
Déploiement et Optimisation des Modèles de Langue Gros (LLM) avec Ollama
14 HeuresCette formation en France (en ligne ou sur site) est destinée aux professionnels de niveau intermédiaire qui souhaitent déployer, optimiser et intégrer des LLM en utilisant Ollama.
A l'issue de cette formation, les participants seront capables de :
- Mettre en place et déployer des LLMs en utilisant Ollama.
- Optimiser les modèles d'IA pour la performance et l'efficacité.
- Tirer parti de l'accélération GPU pour améliorer la vitesse d'inférence.
- Intégrer Ollama dans les flux de travail et les applications.
- Contrôler et maintenir les performances des modèles d'IA au fil du temps.
Fine-Tuning et Personnaliser les modèles d'IA sur Ollama
14 HeuresCe cours en direct avec formateur (en ligne ou sur site) est destiné à des professionnels avancés souhaitant affiner et personnaliser les modèles IA sur Ollama pour une performance accrue et des applications spécifiques au domaine.
À la fin de ce cours, les participants seront en mesure de :
- Configurer un environnement efficace pour l'affinement des modèles IA sur Ollama.
- Préparer des jeux de données pour l'affinement supervisé et l'apprentissage par renforcement.
- Optimiser les modèles IA en termes de performance, d'exactitude et d'efficacité.
- Déployer des modèles personnalisés dans des environnements de production.
- Évaluer les améliorations du modèle et garantir sa robustesse.
Introduction à Claude AI : Conversational AI et Business applications
14 HeuresCette formation en direct avec instructeur à France (en ligne ou sur site) est destinée aux professionnels débutants, aux équipes d'assistance à la clientèle et aux passionnés de technologie qui souhaitent comprendre les principes fondamentaux de l'IA de Claude et l'exploiter pour des applications commerciales.
A la fin de cette formation, les participants seront capables de :
- Comprendre les capacités et les cas d'utilisation de Claude AI.
- Configurer et interagir avec Claude AI de manière efficace.
- Automatiser les flux de travail de l'entreprise avec l'IA conversationnelle.
- Améliorer l'engagement et le soutien des clients en utilisant des solutions basées sur l'IA.
LangGraph Applications in Finance
35 HeuresLangGraph is a framework for building stateful, multi-actor LLM applications as composable graphs with persistent state and control over execution.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to design, implement, and operate LangGraph-based finance solutions with proper governance, observability, and compliance.
By the end of this training, participants will be able to:
- Design finance-specific LangGraph workflows aligned to regulatory and audit requirements.
- Integrate financial data standards and ontologies into graph state and tooling.
- Implement reliability, safety, and human-in-the-loop controls for critical processes.
- Deploy, monitor, and optimize LangGraph systems for performance, cost, and SLAs.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
LangGraph Foundations: Graph-Based LLM Prompting and Chaining
14 HeuresLangGraph is a framework for building graph-structured LLM applications that support planning, branching, tool use, memory, and controllable execution.
This instructor-led, live training (online or onsite) is aimed at beginner-level developers, prompt engineers, and data practitioners who wish to design and build reliable, multi-step LLM workflows using LangGraph.
By the end of this training, participants will be able to:
- Explain core LangGraph concepts (nodes, edges, state) and when to use them.
- Build prompt chains that branch, call tools, and maintain memory.
- Integrate retrieval and external APIs into graph workflows.
- Test, debug, and evaluate LangGraph apps for reliability and safety.
Format of the Course
- Interactive lecture and facilitated discussion.
- Guided labs and code walkthroughs in a sandbox environment.
- Scenario-based exercises on design, testing, and evaluation.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
LangGraph in Healthcare: Workflow Orchestration for Regulated Environments
35 HeuresLangGraph enables stateful, multi-actor workflows powered by LLMs with precise control over execution paths and state persistence. In healthcare, these capabilities are crucial for compliance, interoperability, and building decision-support systems that align with medical workflows.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to design, implement, and manage LangGraph-based healthcare solutions while addressing regulatory, ethical, and operational challenges.
By the end of this training, participants will be able to:
- Design healthcare-specific LangGraph workflows with compliance and auditability in mind.
- Integrate LangGraph applications with medical ontologies and standards (FHIR, SNOMED CT, ICD).
- Apply best practices for reliability, traceability, and explainability in sensitive environments.
- Deploy, monitor, and validate LangGraph applications in healthcare production settings.
Format of the Course
- Interactive lecture and discussion.
- Hands-on exercises with real-world case studies.
- Implementation practice in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
LangGraph for Legal Applications
35 HeuresLangGraph is a framework for building stateful, multi-actor LLM applications as composable graphs with persistent state and precise control over execution.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to design, implement, and operate LangGraph-based legal solutions with the necessary compliance, traceability, and governance controls.
By the end of this training, participants will be able to:
- Design legal-specific LangGraph workflows that preserve auditability and compliance.
- Integrate legal ontologies and document standards into graph state and processing.
- Implement guardrails, human-in-the-loop approvals, and traceable decision paths.
- Deploy, monitor, and maintain LangGraph services in production with observability and cost controls.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Building Dynamic Workflows with LangGraph and LLM Agents
14 HeuresLangGraph is a framework for composing graph-structured LLM workflows that support branching, tool use, memory, and controllable execution.
This instructor-led, live training (online or onsite) is aimed at intermediate-level engineers and product teams who wish to combine LangGraph’s graph logic with LLM agent loops to build dynamic, context-aware applications such as customer support agents, decision trees, and information retrieval systems.
By the end of this training, participants will be able to:
- Design graph-based workflows that coordinate LLM agents, tools, and memory.
- Implement conditional routing, retries, and fallbacks for robust execution.
- Integrate retrieval, APIs, and structured outputs into agent loops.
- Evaluate, monitor, and harden agent behavior for reliability and safety.
Format of the Course
- Interactive lecture and facilitated discussion.
- Guided labs and code walkthroughs in a sandbox environment.
- Scenario-based design exercises and peer reviews.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
LangGraph for Marketing Automation
14 HeuresLangGraph is a graph-based orchestration framework that enables conditional, multi-step LLM and tool workflows, ideal for automating and personalizing content pipelines.
This instructor-led, live training (online or onsite) is aimed at intermediate-level marketers, content strategists, and automation developers who wish to implement dynamic, branching email campaigns and content generation pipelines using LangGraph.
By the end of this training, participants will be able to:
- Design graph-structured content and email workflows with conditional logic.
- Integrate LLMs, APIs, and data sources for automated personalization.
- Manage state, memory, and context across multi-step campaigns.
- Evaluate, monitor, and optimize workflow performance and delivery outcomes.
Format of the Course
- Interactive lectures and group discussions.
- Hands-on labs implementing email workflows and content pipelines.
- Scenario-based exercises on personalization, segmentation, and branching logic.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Démarrer avec Ollama : Exécution de modèles d'IA locaux
7 HeuresCette formation en direct (en ligne ou sur site) et dirigée par un formateur s'adresse aux professionnels débutants qui souhaitent installer, configurer et utiliser Ollama pour exécuter des modèles IA localement.
À la fin de cette formation, les participants seront en mesure de :
- Comprendre les fondamentaux de Ollama et ses capacités.
- Configurer Ollama pour exécuter des modèles IA localement.
- Déployer et interagir avec des LLMs (Large Language Models) à l'aide de Ollama.
- Optimiser les performances et l'utilisation des ressources pour les charges de travail IA.
- Explorer les cas d'usage du déploiement local de l'IA dans divers secteurs.