Plan du cours

Introduction to WrenAI OSS

  • Overview of WrenAI architecture
  • Key OSS components and ecosystem
  • Installation and setup

Semantic Modeling in Wren AI

  • Defining semantic layers
  • Designing reusable metrics and dimensions
  • Best practices for consistency and maintainability

Text to SQL in Practice

  • Mapping natural language to queries
  • Improving SQL generation accuracy
  • Common challenges and troubleshooting

Prompt Tuning and Optimization

  • Prompt engineering strategies
  • Fine-tuning for enterprise datasets
  • Balancing accuracy and performance

Implementing Guardrails

  • Preventing unsafe or costly queries
  • Validation and approval mechanisms
  • Governance and compliance considerations

Integrating WrenAI into Data Workflows

  • Embedding Wren AI in pipelines
  • Connecting to BI and visualization tools
  • Multi-user and enterprise deployments

Advanced Use Cases and Extensions

  • Custom plugins and API integrations
  • Extending WrenAI with ML models
  • Scaling for large datasets

Summary and Next Steps

Pré requis

  • Compréhension solide de SQL et des systèmes de base de données
  • Expérience avec la modélisation des données et les couches sémantiques
  • Connaissance des concepts d'apprentissage automatique ou de traitement du langage naturel

Public cible

  • Ingénieurs de données
  • Ingénieurs analytiques
  • Ingénieurs ML
 21 Heures

Nombre de participants


Prix ​​par Participant

Cours à venir

Catégories Similaires